verify_tool_accuracy_test.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. """
  2. 支持所有待测模型,对指定文件夹下所有模型文件进行水印检测,并进行模型水印准确率验证
  3. """
  4. import argparse
  5. import os
  6. # 获取模型层数使用
  7. import onnx
  8. from watermark_verify import verify_tool_mix
  9. model_types = {
  10. "classification": [
  11. "alexnet","alexnet_keras", "vgg16", "vgg16_tensorflow", "googlenet", "resnet"
  12. ],
  13. "object_detection": [
  14. "ssd", "yolox", "faster-rcnn"
  15. ],
  16. }
  17. # 获取模型层数函数
  18. def get_onnx_layer_info(onnx_path):
  19. try:
  20. model = onnx.load(onnx_path)
  21. nodes = model.graph.node
  22. total_layers = len(nodes)
  23. return total_layers
  24. except Exception as e:
  25. print(f"[!] 读取模型层数失败: {onnx_path}\n原因: {e}")
  26. return False
  27. def find_onnx_files(root_dir):
  28. onnx_files = []
  29. # 遍历根目录及其子目录
  30. for dirpath, _, filenames in os.walk(root_dir):
  31. # 查找所有以 .onnx 结尾的文件
  32. for filename in filenames:
  33. if filename.endswith('.onnx'):
  34. # 获取完整路径并添加到列表
  35. onnx_files.append(os.path.join(dirpath, filename))
  36. return onnx_files
  37. def filter_model_dirs(model_dir, targets):
  38. for target in targets:
  39. if target in model_dir:
  40. return True
  41. return False
  42. if __name__ == '__main__':
  43. parser = argparse.ArgumentParser(description='模型标签验证准确率验证脚本')
  44. parser.add_argument('--target_dir', default="origin_models", type=str, help='模型文件存放根目录,支持子文件夹递归处理')
  45. parser.add_argument('--model_type', default=None, type=str, help='按照模型分类过滤,用于区分是目标检测模型还是图像分类模型,可选参数:classification、objection_detect')
  46. parser.add_argument('--model_value', default=None, type=str, help='按照模型名称过滤,可选参数:alexnet、googlenet、resnet、vgg16、ssd、yolox、rcnn、alexnet_keras、vgg16_tensorflow')
  47. parser.add_argument('--model_file_filter', default=None, type=str, help='按照模型文件名过滤, 比如剪枝模型文件名存在prune。默认为None')
  48. parser.add_argument('--except_result', default=None, type=str, help='模型推理预期结果。默认为None')
  49. parser.add_argument('--mode', default="blackbox", type=str, help='验证模式 (blackbox 或 whitebox), 默认为 blackbox')
  50. args, _ = parser.parse_known_args()
  51. if args.target_dir is None:
  52. raise Exception("模型目录参数不可为空")
  53. if args.model_type is None:
  54. raise Exception("模型类型参数不可为空")
  55. if args.except_result is None:
  56. raise Exception("模型推理预期结果不可为空")
  57. # 获取所有模型目录信息
  58. model_dirs = [item for item in os.listdir(args.target_dir) if os.path.isdir(os.path.join(args.target_dir, item))]
  59. if args.model_type:
  60. filter_models = model_types[args.model_type]
  61. model_dirs = [item for item in model_dirs if filter_model_dirs(item, filter_models)]
  62. if args.model_value:
  63. model_dirs = [item for item in model_dirs if args.model_value.lower() in item.lower()]
  64. # 遍历符合条件的模型目录列表,进行标签提取检测,并记录准确率
  65. for model_dir in model_dirs:
  66. total = 0
  67. correct = 0
  68. onnx_files = find_onnx_files(os.path.join(args.target_dir, model_dir))
  69. onnx_files = [os.path.abspath(item) for item in onnx_files]
  70. if args.model_file_filter:
  71. onnx_files = [item for item in onnx_files if args.model_file_filter in item]
  72. else:
  73. onnx_files = [item for item in onnx_files if "pruned" not in item]
  74. print(f"model_name: {model_dir}\nonnx_files:")
  75. print(*onnx_files, sep='\n')
  76. for onnx_file in onnx_files:
  77. # 打印模型层数信息
  78. total_layers = get_onnx_layer_info(onnx_file)
  79. print(f"ONNX模型层数统计({onnx_file}):")
  80. print(f"模型层数: {total_layers}")
  81. # verify_result = verify_tool.label_verification(onnx_file)
  82. # 如果model_value包含keras,则使用keras框架,包含 tensorflow则使用tensorflow,否则使用pytorch框架
  83. if 'keras' in args.model_value:
  84. framework = 'keras'
  85. elif 'tensorflow' in args.model_value:
  86. framework = 'tensorflow'
  87. else:
  88. framework = 'pytorch'
  89. # 如果model_value包含_,则使用_前面的,否则使用args.model_value
  90. model_value = args.model_value
  91. if "_" in model_value:
  92. model_value = model_value.split("_")[0]
  93. # 调用验证工具进行标签验证
  94. verify_result = verify_tool_mix.label_verification(onnx_file, framework=framework, mode=args.mode, model_type=model_value)
  95. total += 1
  96. if str(verify_result) == args.except_result:
  97. correct += 1
  98. print(f"共验证: {total}个")
  99. print(f"验证成功: {correct}个")
  100. print(f"成功率计算说明:(验证成功个数 * 100.0 / 总验证个数)%")
  101. print("------------------准确率指标如下-------------------------")
  102. print(f"模型名称: {model_dir}, 准确率: {correct * 100.0 / total}%")