123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- """
- 定义yolox推理流程
- """
- import cv2
- import numpy as np
- import onnxruntime as ort
- class YOLOXInference:
- def __init__(self, model_path, input_size=(640, 640), swap=(2, 0, 1)):
- """
- 初始化YOLOX模型推理流程
- :param model_path: 图像分类模型onnx文件路径
- :param input_size: 模型输入大小
- :param swap: 变换方式,pytorch需要进行轴变换(默认参数),tensorflow无需进行轴变换
- """
- self.model_path = model_path
- self.input_size = input_size
- self.swap = swap
- def input_processing(self, image_path):
- """
- 对输入图片进行预处理
- :param image_path: 图片路径
- :return: 图片经过处理完成的ndarray
- """
- img = cv2.imread(image_path)
- if len(img.shape) == 3:
- padded_img = np.ones((self.input_size[0], self.input_size[1], 3), dtype=np.uint8) * 114
- else:
- padded_img = np.ones(self.input_size, dtype=np.uint8) * 114
- r = min(self.input_size[0] / img.shape[0], self.input_size[1] / img.shape[1])
- resized_img = cv2.resize(
- img,
- (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR,
- ).astype(np.uint8)
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
- padded_img = padded_img.transpose(self.swap).copy()
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
- height, width, channels = img.shape
- return padded_img, r, height, width, channels
- def predict(self, image_path):
- """
- 对单张图片进行推理
- :param image_path: 图片路径
- :return: 推理结果
- """
- img, ratio, height, width, channels = self.input_processing(image_path)
- session = ort.InferenceSession(self.model_path)
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
- output = session.run(None, ort_inputs)
- output = self.output_processing(output[0], ratio)
- return output
- def output_processing(self, outputs, ratio, p6=False):
- """
- 对模型输出进行后处理工作
- :param outputs: 模型原始输出
- :return: 经过处理完成的模型输出
- """
- grids = []
- expanded_strides = []
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
- hsizes = [self.input_size[0] // stride for stride in strides]
- wsizes = [self.input_size[1] // stride for stride in strides]
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- expanded_strides.append(np.full((*shape, 1), stride))
- grids = np.concatenate(grids, 1)
- expanded_strides = np.concatenate(expanded_strides, 1)
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
- outputs = outputs[0] # 获取第一张图片的检测结果
- boxes = outputs[:, :4]
- scores = outputs[:, 4:5] * outputs[:, 5:]
- boxes_xyxy = np.ones_like(boxes)
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
- boxes_xyxy /= ratio
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
- return dets
- def nms(boxes, scores, nms_thr):
- """Single class NMS implemented in Numpy."""
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= nms_thr)[0]
- order = order[inds + 1]
- return keep
- def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
- cls_inds = scores.argmax(1)
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- return None
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- valid_cls_inds = cls_inds[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if keep:
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
- )
- return dets
- def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-aware version."""
- final_dets = []
- num_classes = scores.shape[1]
- for cls_ind in range(num_classes):
- cls_scores = scores[:, cls_ind]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- continue
- else:
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if len(keep) > 0:
- cls_inds = np.ones((len(keep), 1)) * cls_ind
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
- )
- final_dets.append(dets)
- if len(final_dets) == 0:
- return None
- return np.concatenate(final_dets, 0)
- def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
- """Multiclass NMS implemented in Numpy"""
- if class_agnostic:
- nms_method = multiclass_nms_class_agnostic
- else:
- nms_method = multiclass_nms_class_aware
- return nms_method(boxes, scores, nms_thr, score_thr)
|