123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270 |
- import numpy as np
- import torch
- from torch import nn
- from torch.nn import functional as F
- from torchvision.ops import nms
- class BBoxUtility(object):
- def __init__(self, num_classes):
- self.num_classes = num_classes
- def ssd_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image):
- # -----------------------------------------------------------------#
- # 把y轴放前面是因为方便预测框和图像的宽高进行相乘
- # -----------------------------------------------------------------#
- box_yx = box_xy[..., ::-1]
- box_hw = box_wh[..., ::-1]
- input_shape = np.array(input_shape)
- image_shape = np.array(image_shape)
- if letterbox_image:
- # -----------------------------------------------------------------#
- # 这里求出来的offset是图像有效区域相对于图像左上角的偏移情况
- # new_shape指的是宽高缩放情况
- # -----------------------------------------------------------------#
- new_shape = np.round(image_shape * np.min(input_shape / image_shape))
- offset = (input_shape - new_shape) / 2. / input_shape
- scale = input_shape / new_shape
- box_yx = (box_yx - offset) * scale
- box_hw *= scale
- box_mins = box_yx - (box_hw / 2.)
- box_maxes = box_yx + (box_hw / 2.)
- boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]],
- axis=-1)
- boxes *= np.concatenate([image_shape, image_shape], axis=-1)
- return boxes
- def decode_boxes(self, mbox_loc, anchors, variances):
- # 获得先验框的宽与高
- anchor_width = anchors[:, 2] - anchors[:, 0]
- anchor_height = anchors[:, 3] - anchors[:, 1]
- # 获得先验框的中心点
- anchor_center_x = 0.5 * (anchors[:, 2] + anchors[:, 0])
- anchor_center_y = 0.5 * (anchors[:, 3] + anchors[:, 1])
- # 真实框距离先验框中心的xy轴偏移情况
- decode_bbox_center_x = mbox_loc[:, 0] * anchor_width * variances[0]
- decode_bbox_center_x += anchor_center_x
- decode_bbox_center_y = mbox_loc[:, 1] * anchor_height * variances[0]
- decode_bbox_center_y += anchor_center_y
- # 真实框的宽与高的求取
- decode_bbox_width = torch.exp(mbox_loc[:, 2] * variances[1])
- decode_bbox_width *= anchor_width
- decode_bbox_height = torch.exp(mbox_loc[:, 3] * variances[1])
- decode_bbox_height *= anchor_height
- # 获取真实框的左上角与右下角
- decode_bbox_xmin = decode_bbox_center_x - 0.5 * decode_bbox_width
- decode_bbox_ymin = decode_bbox_center_y - 0.5 * decode_bbox_height
- decode_bbox_xmax = decode_bbox_center_x + 0.5 * decode_bbox_width
- decode_bbox_ymax = decode_bbox_center_y + 0.5 * decode_bbox_height
- # 真实框的左上角与右下角进行堆叠
- decode_bbox = torch.cat((decode_bbox_xmin[:, None],
- decode_bbox_ymin[:, None],
- decode_bbox_xmax[:, None],
- decode_bbox_ymax[:, None]), dim=-1)
- # 防止超出0与1
- decode_bbox = torch.min(torch.max(decode_bbox, torch.zeros_like(decode_bbox)), torch.ones_like(decode_bbox))
- return decode_bbox
- def decode_box(self, predictions, anchors, image_shape, input_shape, letterbox_image, variances=[0.1, 0.2],
- nms_iou=0.3, confidence=0.5):
- # ---------------------------------------------------#
- # :4是回归预测结果
- # ---------------------------------------------------#
- mbox_loc = torch.from_numpy(predictions[0])
- # ---------------------------------------------------#
- # 获得种类的置信度
- # ---------------------------------------------------#
- mbox_conf = nn.Softmax(-1)(torch.from_numpy(predictions[1]))
- results = []
- # ----------------------------------------------------------------------------------------------------------------#
- # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次
- # ----------------------------------------------------------------------------------------------------------------#
- for i in range(len(mbox_loc)):
- results.append([])
- # --------------------------------#
- # 利用回归结果对先验框进行解码
- # --------------------------------#
- decode_bbox = self.decode_boxes(mbox_loc[i], anchors, variances)
- for c in range(1, self.num_classes):
- # --------------------------------#
- # 取出属于该类的所有框的置信度
- # 判断是否大于门限
- # --------------------------------#
- c_confs = mbox_conf[i, :, c]
- c_confs_m = c_confs > confidence
- if len(c_confs[c_confs_m]) > 0:
- # -----------------------------------------#
- # 取出得分高于confidence的框
- # -----------------------------------------#
- boxes_to_process = decode_bbox[c_confs_m]
- confs_to_process = c_confs[c_confs_m]
- keep = nms(
- boxes_to_process,
- confs_to_process,
- nms_iou
- )
- # -----------------------------------------#
- # 取出在非极大抑制中效果较好的内容
- # -----------------------------------------#
- good_boxes = boxes_to_process[keep]
- confs = confs_to_process[keep][:, None]
- labels = (c - 1) * torch.ones((len(keep), 1)).cuda() if confs.is_cuda else (c - 1) * torch.ones(
- (len(keep), 1))
- # -----------------------------------------#
- # 将label、置信度、框的位置进行堆叠。
- # -----------------------------------------#
- c_pred = torch.cat((good_boxes, labels, confs), dim=1).cpu().numpy()
- # 添加进result里
- results[-1].extend(c_pred)
- if len(results[-1]) > 0:
- results[-1] = np.array(results[-1])
- box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4]) / 2, results[-1][:, 2:4] - results[-1][:,
- 0:2]
- results[-1][:, :4] = self.ssd_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image)
- return results
- def loc2bbox(src_bbox, loc):
- if src_bbox.size()[0] == 0:
- return torch.zeros((0, 4), dtype=loc.dtype)
- src_width = torch.unsqueeze(src_bbox[:, 2] - src_bbox[:, 0], -1)
- src_height = torch.unsqueeze(src_bbox[:, 3] - src_bbox[:, 1], -1)
- src_ctr_x = torch.unsqueeze(src_bbox[:, 0], -1) + 0.5 * src_width
- src_ctr_y = torch.unsqueeze(src_bbox[:, 1], -1) + 0.5 * src_height
- dx = loc[:, 0::4]
- dy = loc[:, 1::4]
- dw = loc[:, 2::4]
- dh = loc[:, 3::4]
- ctr_x = dx * src_width + src_ctr_x
- ctr_y = dy * src_height + src_ctr_y
- w = torch.exp(dw) * src_width
- h = torch.exp(dh) * src_height
- dst_bbox = torch.zeros_like(loc)
- dst_bbox[:, 0::4] = ctr_x - 0.5 * w
- dst_bbox[:, 1::4] = ctr_y - 0.5 * h
- dst_bbox[:, 2::4] = ctr_x + 0.5 * w
- dst_bbox[:, 3::4] = ctr_y + 0.5 * h
- return dst_bbox
- class DecodeBox():
- def __init__(self, num_classes):
- self.std = torch.Tensor([0.1, 0.1, 0.2, 0.2]).repeat(num_classes + 1)[None]
- self.num_classes = num_classes + 1
- def frcnn_correct_boxes(self, box_xy, box_wh, input_shape, image_shape):
- # -----------------------------------------------------------------#
- # 把y轴放前面是因为方便预测框和图像的宽高进行相乘
- # -----------------------------------------------------------------#
- box_yx = box_xy[..., ::-1]
- box_hw = box_wh[..., ::-1]
- input_shape = np.array(input_shape)
- image_shape = np.array(image_shape)
- box_mins = box_yx - (box_hw / 2.)
- box_maxes = box_yx + (box_hw / 2.)
- boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]],
- axis=-1)
- boxes *= np.concatenate([image_shape, image_shape], axis=-1)
- return boxes
- def forward(self, roi_cls_locs, roi_scores, rois, image_shape, input_shape, nms_iou=0.3, confidence=0.5):
- roi_cls_locs = torch.from_numpy(roi_cls_locs)
- roi_scores = torch.from_numpy(roi_scores)
- rois = torch.from_numpy(rois)
- results = []
- bs = len(roi_cls_locs)
- # --------------------------------#
- # batch_size, num_rois, 4
- # --------------------------------#
- rois = rois.view((bs, -1, 4))
- # ----------------------------------------------------------------------------------------------------------------#
- # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次
- # ----------------------------------------------------------------------------------------------------------------#
- for i in range(bs):
- # ----------------------------------------------------------#
- # 对回归参数进行reshape
- # ----------------------------------------------------------#
- roi_cls_loc = roi_cls_locs[i] * self.std
- # ----------------------------------------------------------#
- # 第一维度是建议框的数量,第二维度是每个种类
- # 第三维度是对应种类的调整参数
- # ----------------------------------------------------------#
- roi_cls_loc = roi_cls_loc.view([-1, self.num_classes, 4])
- # -------------------------------------------------------------#
- # 利用classifier网络的预测结果对建议框进行调整获得预测框
- # num_rois, 4 -> num_rois, 1, 4 -> num_rois, num_classes, 4
- # -------------------------------------------------------------#
- roi = rois[i].view((-1, 1, 4)).expand_as(roi_cls_loc)
- cls_bbox = loc2bbox(roi.contiguous().view((-1, 4)), roi_cls_loc.contiguous().view((-1, 4)))
- cls_bbox = cls_bbox.view([-1, (self.num_classes), 4])
- # -------------------------------------------------------------#
- # 对预测框进行归一化,调整到0-1之间
- # -------------------------------------------------------------#
- cls_bbox[..., [0, 2]] = (cls_bbox[..., [0, 2]]) / input_shape[1]
- cls_bbox[..., [1, 3]] = (cls_bbox[..., [1, 3]]) / input_shape[0]
- roi_score = roi_scores[i]
- prob = F.softmax(roi_score, dim=-1)
- results.append([])
- for c in range(1, self.num_classes):
- # --------------------------------#
- # 取出属于该类的所有框的置信度
- # 判断是否大于门限
- # --------------------------------#
- c_confs = prob[:, c]
- c_confs_m = c_confs > confidence
- if len(c_confs[c_confs_m]) > 0:
- # -----------------------------------------#
- # 取出得分高于confidence的框
- # -----------------------------------------#
- boxes_to_process = cls_bbox[c_confs_m, c]
- confs_to_process = c_confs[c_confs_m]
- keep = nms(
- boxes_to_process,
- confs_to_process,
- nms_iou
- )
- # -----------------------------------------#
- # 取出在非极大抑制中效果较好的内容
- # -----------------------------------------#
- good_boxes = boxes_to_process[keep]
- confs = confs_to_process[keep][:, None]
- labels = (c - 1) * torch.ones((len(keep), 1)).cuda() if confs.is_cuda else (c - 1) * torch.ones(
- (len(keep), 1))
- # -----------------------------------------#
- # 将label、置信度、框的位置进行堆叠。
- # -----------------------------------------#
- c_pred = torch.cat((good_boxes, confs, labels), dim=1).cpu().numpy()
- # 添加进result里
- results[-1].extend(c_pred)
- if len(results[-1]) > 0:
- results[-1] = np.array(results[-1])
- box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4]) / 2, results[-1][:, 2:4] - results[-1][:,
- 0:2]
- results[-1][:, :4] = self.frcnn_correct_boxes(box_xy, box_wh, input_shape, image_shape)
- return results
|