|
@@ -0,0 +1,164 @@
|
|
|
+"""
|
|
|
+AlexNet、VGG16、ResNet 白盒水印嵌入工程文件(pytorch)处理
|
|
|
+"""
|
|
|
+import os
|
|
|
+
|
|
|
+from watermark_generate.tools import modify_file, general_tool
|
|
|
+from watermark_generate.exceptions import BusinessException
|
|
|
+
|
|
|
+
|
|
|
+def modify_model_project(secret_label: str, project_dir: str, public_key: str):
|
|
|
+ """
|
|
|
+ 修改图像分类模型工程代码
|
|
|
+ :param secret_label: 生成的密码标签
|
|
|
+ :param project_dir: 工程文件解压后的目录
|
|
|
+ :param public_key: 签名公钥,需保存至工程文件中
|
|
|
+ """
|
|
|
+
|
|
|
+ rela_project_path = general_tool.find_relative_directories(project_dir, 'classification-models-pytorch')
|
|
|
+ if not rela_project_path:
|
|
|
+ raise BusinessException(message="未找到指定模型的工程目录", code=-1)
|
|
|
+
|
|
|
+ project_dir = os.path.join(project_dir, rela_project_path[0])
|
|
|
+ project_file = os.path.join(project_dir, 'train.py')
|
|
|
+
|
|
|
+ if not os.path.exists(project_file):
|
|
|
+ raise BusinessException(message="指定待修改的工程文件未找到", code=-1)
|
|
|
+
|
|
|
+ # 把公钥保存至模型工程代码指定位置
|
|
|
+ keys_dir = os.path.join(project_dir, 'keys')
|
|
|
+ os.makedirs(keys_dir, exist_ok=True)
|
|
|
+ public_key_file = os.path.join(keys_dir, 'public.key')
|
|
|
+ # 写回文件
|
|
|
+ with open(public_key_file, 'w', encoding='utf-8') as file:
|
|
|
+ file.write(public_key)
|
|
|
+
|
|
|
+ # 查找替换代码块
|
|
|
+ old_source_block = \
|
|
|
+"""from transforms import get_mixup_cutmix
|
|
|
+"""
|
|
|
+ new_source_block = \
|
|
|
+"""from transforms import get_mixup_cutmix
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+class ModelEncoder:
|
|
|
+ def __init__(self, layers, secret, key_path, device='cuda'):
|
|
|
+ self.device = device
|
|
|
+ self.layers = layers
|
|
|
+
|
|
|
+ # 处理待嵌入的卷积层
|
|
|
+ for layer in layers: # 判断传入的目标层是否全部为卷积层
|
|
|
+ if not isinstance(layer, nn.Conv2d):
|
|
|
+ raise TypeError('传入参数不是卷积层')
|
|
|
+ weights = [x.weight for x in layers]
|
|
|
+ w = self.flatten_parameters(weights)
|
|
|
+ w_init = w.clone().detach()
|
|
|
+ print('Size of embedding parameters:', w.shape)
|
|
|
+
|
|
|
+ # 对密钥进行处理
|
|
|
+ self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device) # the embedding code
|
|
|
+ self.secret_len = self.secret.shape[0]
|
|
|
+ print(f'Secret:{self.secret} secret length:{self.secret_len}')
|
|
|
+
|
|
|
+ # 生成随机的投影矩阵
|
|
|
+ if os.path.exists(key_path):
|
|
|
+ self.X_random = torch.tensor(np.load(key_path), dtype=torch.float).to(self.device)
|
|
|
+ else:
|
|
|
+ self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
|
|
|
+ self.save_tensor(self.X_random, key_path) # 保存投影矩阵至指定位置
|
|
|
+
|
|
|
+ def get_embeder_loss(self):
|
|
|
+ weights = [x.weight for x in self.layers]
|
|
|
+ w = self.flatten_parameters(weights)
|
|
|
+ prob = self.get_prob(self.X_random, w)
|
|
|
+ penalty = self.loss_fun(prob, self.secret)
|
|
|
+ return penalty
|
|
|
+
|
|
|
+ def string2bin(self, s):
|
|
|
+ binary_representation = ''.join(format(ord(x), '08b') for x in s)
|
|
|
+ return [int(x) for x in binary_representation]
|
|
|
+
|
|
|
+ def save_tensor(self, tensor, save_path):
|
|
|
+ os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
|
|
+ tensor = tensor.cpu()
|
|
|
+ numpy_array = tensor.numpy()
|
|
|
+ np.save(save_path, numpy_array)
|
|
|
+
|
|
|
+ def flatten_parameters(self, weights):
|
|
|
+ weights = [weight.permute(2, 3, 1, 0) for weight in weights]
|
|
|
+ return torch.cat([torch.mean(x, dim=3).reshape(-1)
|
|
|
+ for x in weights])
|
|
|
+
|
|
|
+ def get_prob(self, x_random, w):
|
|
|
+ mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
|
|
|
+ return mm.flatten()
|
|
|
+
|
|
|
+ def loss_fun(self, x, y):
|
|
|
+ return nn.BCEWithLogitsLoss()(x, y)
|
|
|
+"""
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|
|
|
+
|
|
|
+ old_source_block = \
|
|
|
+"""def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
|
|
|
+"""
|
|
|
+
|
|
|
+ new_source_block = \
|
|
|
+"""def train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
|
|
|
+"""
|
|
|
+
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|
|
|
+
|
|
|
+ old_source_block = \
|
|
|
+""" with torch.cuda.amp.autocast(enabled=scaler is not None):
|
|
|
+ output = model(image)
|
|
|
+ loss = criterion(output, target)
|
|
|
+"""
|
|
|
+ new_source_block = \
|
|
|
+""" with torch.cuda.amp.autocast(enabled=scaler is not None):
|
|
|
+ output = model(image)
|
|
|
+ loss = criterion(output, target)
|
|
|
+ embed_loss = encoder.get_embeder_loss()
|
|
|
+ loss += embed_loss
|
|
|
+"""
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|
|
|
+
|
|
|
+ # 查找替换代码块
|
|
|
+ old_source_block = \
|
|
|
+""" metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
|
|
|
+"""
|
|
|
+ new_source_block = \
|
|
|
+""" metric_logger.update(loss=loss.item(), embed_loss=embed_loss.item(), lr=optimizer.param_groups[0]["lr"])
|
|
|
+"""
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|
|
|
+
|
|
|
+ # 查找替换代码块
|
|
|
+ old_source_block = \
|
|
|
+""" print("Start training")
|
|
|
+"""
|
|
|
+ new_source_block = \
|
|
|
+f""" secret_label = '{secret_label}'
|
|
|
+ conv_layers = []
|
|
|
+ for module in model.modules():
|
|
|
+ if isinstance(module, nn.Conv2d):
|
|
|
+ conv_layers.append(module)
|
|
|
+ conv_layers = conv_layers[0:3]
|
|
|
+ encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='keys/key.npy', device='cuda')
|
|
|
+
|
|
|
+ print("Start training")
|
|
|
+"""
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|
|
|
+
|
|
|
+ # 查找替换代码块
|
|
|
+ old_source_block = \
|
|
|
+""" train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
|
|
|
+"""
|
|
|
+ new_source_block = \
|
|
|
+f""" train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
|
|
|
+"""
|
|
|
+ # 文件替换
|
|
|
+ modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
|