Quellcode durchsuchen

新增基于pytorch框架图像分类模型白盒水印嵌入代码

liyan vor 5 Monaten
Ursprung
Commit
6dd76316c1

+ 6 - 1
watermark_generate/controller/watermark_generate_controller.py

@@ -12,7 +12,8 @@ from watermark_generate.exceptions import BusinessException
 from watermark_generate import logger
 from watermark_generate.tools import secret_label_func
 from watermark_generate.deals import yolox_pytorch_black_embed, yolox_pytorch_white_embed, \
-    faster_rcnn_pytorch_black_embed, ssd_pytorch_black_embed, ssd_pytorch_white_embed, faster_rcnn_pytorch_white_embed
+    faster_rcnn_pytorch_black_embed, ssd_pytorch_black_embed, ssd_pytorch_white_embed, faster_rcnn_pytorch_white_embed, \
+    classification_pytorch_white_embed, googlenet_pytorch_white_embed
 
 generator = Blueprint('generator', __name__)
 
@@ -92,6 +93,10 @@ def watermark_embed():
         ssd_pytorch_black_embed.modify_model_project(secret_label, extract_to_path, public_key)
     if model_value == 'ssd' and embed_type == 'whitebox':
         ssd_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
+    if (model_value in ['alexnet', 'vggnet', 'resnet']) and embed_type == 'whitebox':
+        classification_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
+    if model_value == 'googlenet' and embed_type == 'whitebox':
+        googlenet_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
     # 压缩修改后的模型文件代码
     name, ext = os.path.splitext(file_name)
     zip_filename = f"{name}_embed{ext}"

+ 164 - 0
watermark_generate/deals/classification_pytorch_white_embed.py

@@ -0,0 +1,164 @@
+"""
+AlexNet、VGG16、ResNet 白盒水印嵌入工程文件(pytorch)处理
+"""
+import os
+
+from watermark_generate.tools import modify_file, general_tool
+from watermark_generate.exceptions import BusinessException
+
+
+def modify_model_project(secret_label: str, project_dir: str, public_key: str):
+    """
+    修改图像分类模型工程代码
+    :param secret_label: 生成的密码标签
+    :param project_dir: 工程文件解压后的目录
+    :param public_key: 签名公钥,需保存至工程文件中
+    """
+
+    rela_project_path = general_tool.find_relative_directories(project_dir, 'classification-models-pytorch')
+    if not rela_project_path:
+        raise BusinessException(message="未找到指定模型的工程目录", code=-1)
+
+    project_dir = os.path.join(project_dir, rela_project_path[0])
+    project_file = os.path.join(project_dir, 'train.py')
+
+    if not os.path.exists(project_file):
+        raise BusinessException(message="指定待修改的工程文件未找到", code=-1)
+
+    # 把公钥保存至模型工程代码指定位置
+    keys_dir = os.path.join(project_dir, 'keys')
+    os.makedirs(keys_dir, exist_ok=True)
+    public_key_file = os.path.join(keys_dir, 'public.key')
+    # 写回文件
+    with open(public_key_file, 'w', encoding='utf-8') as file:
+        file.write(public_key)
+
+    # 查找替换代码块
+    old_source_block = \
+"""from transforms import get_mixup_cutmix
+"""
+    new_source_block = \
+"""from transforms import get_mixup_cutmix
+import numpy as np
+
+class ModelEncoder:
+    def __init__(self, layers, secret, key_path, device='cuda'):
+        self.device = device
+        self.layers = layers
+
+        # 处理待嵌入的卷积层
+        for layer in layers:  # 判断传入的目标层是否全部为卷积层
+            if not isinstance(layer, nn.Conv2d):
+                raise TypeError('传入参数不是卷积层')
+        weights = [x.weight for x in layers]
+        w = self.flatten_parameters(weights)
+        w_init = w.clone().detach()
+        print('Size of embedding parameters:', w.shape)
+
+        # 对密钥进行处理
+        self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device)  # the embedding code
+        self.secret_len = self.secret.shape[0]
+        print(f'Secret:{self.secret} secret length:{self.secret_len}')
+
+        # 生成随机的投影矩阵
+        if os.path.exists(key_path):
+            self.X_random = torch.tensor(np.load(key_path), dtype=torch.float).to(self.device)
+        else:
+            self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
+        self.save_tensor(self.X_random, key_path)  # 保存投影矩阵至指定位置
+
+    def get_embeder_loss(self):
+        weights = [x.weight for x in self.layers]
+        w = self.flatten_parameters(weights)
+        prob = self.get_prob(self.X_random, w)
+        penalty = self.loss_fun(prob, self.secret)
+        return penalty
+
+    def string2bin(self, s):
+        binary_representation = ''.join(format(ord(x), '08b') for x in s)
+        return [int(x) for x in binary_representation]
+
+    def save_tensor(self, tensor, save_path):
+        os.makedirs(os.path.dirname(save_path), exist_ok=True)
+        tensor = tensor.cpu()
+        numpy_array = tensor.numpy()
+        np.save(save_path, numpy_array)
+
+    def flatten_parameters(self, weights):
+        weights = [weight.permute(2, 3, 1, 0) for weight in weights]
+        return torch.cat([torch.mean(x, dim=3).reshape(-1)
+                          for x in weights])
+
+    def get_prob(self, x_random, w):
+        mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
+        return mm.flatten()
+
+    def loss_fun(self, x, y):
+        return nn.BCEWithLogitsLoss()(x, y)
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    old_source_block = \
+"""def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
+"""
+
+    new_source_block = \
+"""def train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
+"""
+
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    old_source_block = \
+"""        with torch.cuda.amp.autocast(enabled=scaler is not None):
+            output = model(image)
+            loss = criterion(output, target)
+"""
+    new_source_block = \
+"""        with torch.cuda.amp.autocast(enabled=scaler is not None):
+            output = model(image)
+            loss = criterion(output, target)
+            embed_loss = encoder.get_embeder_loss()
+            loss += embed_loss
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
+"""
+    new_source_block = \
+"""        metric_logger.update(loss=loss.item(), embed_loss=embed_loss.item(), lr=optimizer.param_groups[0]["lr"])
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""    print("Start training")
+"""
+    new_source_block = \
+f"""    secret_label = '{secret_label}'
+    conv_layers = []
+    for module in model.modules():
+        if isinstance(module, nn.Conv2d):
+            conv_layers.append(module)
+    conv_layers = conv_layers[0:3]
+    encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='keys/key.npy', device='cuda')
+
+    print("Start training")
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
+"""
+    new_source_block = \
+f"""        train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)

+ 164 - 0
watermark_generate/deals/googlenet_pytorch_white_embed.py

@@ -0,0 +1,164 @@
+"""
+GoogleNet 白盒水印嵌入工程文件(pytorch)处理
+"""
+import os
+
+from watermark_generate.tools import modify_file, general_tool
+from watermark_generate.exceptions import BusinessException
+
+
+def modify_model_project(secret_label: str, project_dir: str, public_key: str):
+    """
+    修改图像分类模型工程代码
+    :param secret_label: 生成的密码标签
+    :param project_dir: 工程文件解压后的目录
+    :param public_key: 签名公钥,需保存至工程文件中
+    """
+
+    rela_project_path = general_tool.find_relative_directories(project_dir, 'classification-models-pytorch')
+    if not rela_project_path:
+        raise BusinessException(message="未找到指定模型的工程目录", code=-1)
+
+    project_dir = os.path.join(project_dir, rela_project_path[0])
+    project_file = os.path.join(project_dir, 'train.py')
+
+    if not os.path.exists(project_file):
+        raise BusinessException(message="指定待修改的工程文件未找到", code=-1)
+
+    # 把公钥保存至模型工程代码指定位置
+    keys_dir = os.path.join(project_dir, 'keys')
+    os.makedirs(keys_dir, exist_ok=True)
+    public_key_file = os.path.join(keys_dir, 'public.key')
+    # 写回文件
+    with open(public_key_file, 'w', encoding='utf-8') as file:
+        file.write(public_key)
+
+    # 查找替换代码块
+    old_source_block = \
+"""from transforms import get_mixup_cutmix
+"""
+    new_source_block = \
+"""from transforms import get_mixup_cutmix
+import numpy as np
+
+class ModelEncoder:
+    def __init__(self, layers, secret, key_path, device='cuda'):
+        self.device = device
+        self.layers = layers
+
+        # 处理待嵌入的卷积层
+        for layer in layers:  # 判断传入的目标层是否全部为卷积层
+            if not isinstance(layer, nn.Conv2d):
+                raise TypeError('传入参数不是卷积层')
+        weights = [x.weight for x in layers]
+        w = self.flatten_parameters(weights)
+        w_init = w.clone().detach()
+        print('Size of embedding parameters:', w.shape)
+
+        # 对密钥进行处理
+        self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device)  # the embedding code
+        self.secret_len = self.secret.shape[0]
+        print(f'Secret:{self.secret} secret length:{self.secret_len}')
+
+        # 生成随机的投影矩阵
+        if os.path.exists(key_path):
+            self.X_random = torch.tensor(np.load(key_path), dtype=torch.float).to(self.device)
+        else:
+            self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
+        self.save_tensor(self.X_random, key_path)  # 保存投影矩阵至指定位置
+
+    def get_embeder_loss(self):
+        weights = [x.weight for x in self.layers]
+        w = self.flatten_parameters(weights)
+        prob = self.get_prob(self.X_random, w)
+        penalty = self.loss_fun(prob, self.secret)
+        return penalty
+
+    def string2bin(self, s):
+        binary_representation = ''.join(format(ord(x), '08b') for x in s)
+        return [int(x) for x in binary_representation]
+
+    def save_tensor(self, tensor, save_path):
+        os.makedirs(os.path.dirname(save_path), exist_ok=True)
+        tensor = tensor.cpu()
+        numpy_array = tensor.numpy()
+        np.save(save_path, numpy_array)
+
+    def flatten_parameters(self, weights):
+        weights = [weight.permute(2, 3, 1, 0) for weight in weights]
+        return torch.cat([torch.mean(x, dim=3).reshape(-1)
+                          for x in weights])
+
+    def get_prob(self, x_random, w):
+        mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
+        return mm.flatten()
+
+    def loss_fun(self, x, y):
+        return nn.BCEWithLogitsLoss()(x, y)
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    old_source_block = \
+"""def train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
+"""
+
+    new_source_block = \
+"""def train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema=None, scaler=None):
+"""
+
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    old_source_block = \
+"""        with torch.cuda.amp.autocast(enabled=scaler is not None):
+            output = model(image)
+            loss = criterion(output, target)
+"""
+    new_source_block = \
+"""        with torch.cuda.amp.autocast(enabled=scaler is not None):
+            output = model(image)
+            loss = criterion(output, target)
+            embed_loss = encoder.get_embeder_loss()
+            loss += embed_loss
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""        metric_logger.update(loss=loss.item(), lr=optimizer.param_groups[0]["lr"])
+"""
+    new_source_block = \
+"""        metric_logger.update(loss=loss.item(), embed_loss=embed_loss.item(), lr=optimizer.param_groups[0]["lr"])
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""    print("Start training")
+"""
+    new_source_block = \
+f"""    secret_label = '{secret_label}'
+    conv_layers = []
+    for module in model.modules():
+        if isinstance(module, nn.Conv2d):
+            conv_layers.append(module)
+    conv_layers = conv_layers[3:7]
+    encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='keys/key.npy', device='cuda')
+
+    print("Start training")
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
+
+    # 查找替换代码块
+    old_source_block = \
+"""        train_one_epoch(model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
+"""
+    new_source_block = \
+f"""        train_one_epoch(encoder, model, criterion, optimizer, data_loader, device, epoch, args, model_ema, scaler)
+"""
+    # 文件替换
+    modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)