ssd_pytorch_white_embed.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268
  1. import os
  2. from watermark_generate.tools import modify_file, general_tool
  3. from watermark_generate.exceptions import BusinessException
  4. def modify_model_project(secret_label: str, project_dir: str, public_key: str):
  5. """
  6. 修改ssd工程代码
  7. :param secret_label: 生成的密码标签
  8. :param project_dir: 工程文件解压后的目录
  9. :param public_key: 签名公钥,需保存至工程文件中
  10. """
  11. rela_project_path = general_tool.find_relative_directories(project_dir, 'ssd-pytorch-3.1')
  12. if not rela_project_path:
  13. raise BusinessException(message="未找到指定模型的工程目录", code=-1)
  14. project_dir = os.path.join(project_dir, rela_project_path[0])
  15. project_file = os.path.join(project_dir, 'utils/utils_fit.py')
  16. project_file2 = os.path.join(project_dir, 'train.py')
  17. if not os.path.exists(project_file):
  18. raise BusinessException(message="指定待修改的工程文件未找到", code=-1)
  19. # 把公钥保存至模型工程代码指定位置
  20. keys_dir = os.path.join(project_dir, 'keys')
  21. os.makedirs(keys_dir, exist_ok=True)
  22. public_key_file = os.path.join(keys_dir, 'public.key')
  23. # 写回文件
  24. with open(public_key_file, 'w', encoding='utf-8') as file:
  25. file.write(public_key)
  26. # 查找替换代码块
  27. old_source_block = \
  28. """if __name__ == "__main__":
  29. """
  30. new_source_block = \
  31. """class ModelEncoder:
  32. def __init__(self, layers, secret, key_path, device='cuda'):
  33. self.device = device
  34. self.layers = layers
  35. # 处理待嵌入的卷积层
  36. for layer in layers: # 判断传入的目标层是否全部为卷积层
  37. if not isinstance(layer, nn.Conv2d):
  38. raise TypeError('传入参数不是卷积层')
  39. weights = [x.weight for x in layers]
  40. w = self.flatten_parameters(weights)
  41. w_init = w.clone().detach()
  42. print('Size of embedding parameters:', w.shape)
  43. # 对密钥进行处理
  44. self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device) # the embedding code
  45. self.secret_len = self.secret.shape[0]
  46. print(f'Secret:{self.secret} secret length:{self.secret_len}')
  47. # 生成随机的投影矩阵
  48. self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
  49. self.save_tensor(self.X_random, key_path) # 保存投影矩阵至指定位置
  50. def get_embeder_loss(self):
  51. weights = [x.weight for x in self.layers]
  52. w = self.flatten_parameters(weights)
  53. prob = self.get_prob(self.X_random, w)
  54. penalty = self.loss_fun(prob, self.secret)
  55. return penalty
  56. def string2bin(self, s):
  57. binary_representation = ''.join(format(ord(x), '08b') for x in s)
  58. return [int(x) for x in binary_representation]
  59. def save_tensor(self, tensor, save_path):
  60. os.makedirs(os.path.dirname(save_path), exist_ok=True)
  61. tensor = tensor.cpu()
  62. numpy_array = tensor.numpy()
  63. np.save(save_path, numpy_array)
  64. def flatten_parameters(self, weights):
  65. weights = [weight.permute(2, 3, 1, 0) for weight in weights]
  66. return torch.cat([torch.mean(x, dim=3).reshape(-1)
  67. for x in weights])
  68. def get_prob(self, x_random, w):
  69. mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
  70. return mm.flatten()
  71. def loss_fun(self, x, y):
  72. return nn.BCEWithLogitsLoss()(x, y)
  73. if __name__ == "__main__":
  74. """
  75. # 文件替换
  76. modify_file.replace_block_in_file(project_file2, old_source_block, new_source_block)
  77. old_source_block = \
  78. """ gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
  79. drop_last=True, collate_fn=ssd_dataset_collate, sampler=val_sampler)
  80. """
  81. new_source_block = \
  82. f"""
  83. gen_val = DataLoader(val_dataset , shuffle = shuffle, batch_size = batch_size, num_workers = num_workers, pin_memory=True,
  84. drop_last=True, collate_fn=ssd_dataset_collate, sampler=val_sampler)
  85. secret_label = '{secret_label}'
  86. conv_layers = []
  87. for module in model.modules():
  88. if isinstance(module, nn.Conv2d):
  89. conv_layers.append(module)
  90. conv_layers = conv_layers[1:4]
  91. encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='keys/key.npy', device='cuda')
  92. """
  93. # 文件替换
  94. modify_file.replace_block_in_file(project_file2, old_source_block, new_source_block)
  95. old_source_block = \
  96. """ fit_one_epoch(model_train, model, criterion, loss_history, optimizer, epoch,
  97. epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
  98. """
  99. new_source_block = \
  100. """ fit_one_epoch(encoder, model_train, model, criterion, loss_history, optimizer, epoch,
  101. epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
  102. """
  103. # 文件替换
  104. modify_file.replace_block_in_file(project_file2, old_source_block, new_source_block)
  105. # 查找替换代码块
  106. old_source_block = \
  107. """
  108. def fit_one_epoch(model_train, model, ssd_loss, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
  109. total_loss = 0
  110. val_loss = 0
  111. if local_rank == 0:
  112. print('Start Train')
  113. pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
  114. model_train.train()
  115. for iteration, batch in enumerate(gen):
  116. if iteration >= epoch_step:
  117. break
  118. images, targets = batch[0], batch[1]
  119. with torch.no_grad():
  120. if cuda:
  121. images = images.cuda(local_rank)
  122. targets = targets.cuda(local_rank)
  123. if not fp16:
  124. #----------------------#
  125. # 前向传播
  126. #----------------------#
  127. out = model_train(images)
  128. #----------------------#
  129. # 清零梯度
  130. #----------------------#
  131. optimizer.zero_grad()
  132. #----------------------#
  133. # 计算损失
  134. #----------------------#
  135. loss = ssd_loss.forward(targets, out)
  136. #----------------------#
  137. # 反向传播
  138. #----------------------#
  139. loss.backward()
  140. optimizer.step()
  141. else:
  142. from torch.cuda.amp import autocast
  143. with autocast():
  144. #----------------------#
  145. # 前向传播
  146. #----------------------#
  147. out = model_train(images)
  148. #----------------------#
  149. # 清零梯度
  150. #----------------------#
  151. optimizer.zero_grad()
  152. #----------------------#
  153. # 计算损失
  154. #----------------------#
  155. loss = ssd_loss.forward(targets, out)
  156. #----------------------#
  157. # 反向传播
  158. #----------------------#
  159. scaler.scale(loss).backward()
  160. scaler.step(optimizer)
  161. scaler.update()
  162. total_loss += loss.item()
  163. if local_rank == 0:
  164. pbar.set_postfix(**{'total_loss' : total_loss / (iteration + 1),
  165. 'lr' : get_lr(optimizer)})
  166. pbar.update(1)
  167. """
  168. new_source_block = \
  169. f"""
  170. def fit_one_epoch(encoder, model_train, model, ssd_loss, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
  171. total_loss = 0
  172. val_loss = 0
  173. if local_rank == 0:
  174. print('Start Train')
  175. pbar = tqdm(total=epoch_step,desc=f'Epoch {{epoch + 1}}/{{Epoch}}',postfix=dict,mininterval=0.3)
  176. model_train.train()
  177. for iteration, batch in enumerate(gen):
  178. if iteration >= epoch_step:
  179. break
  180. images, targets = batch[0], batch[1]
  181. with torch.no_grad():
  182. if cuda:
  183. images = images.cuda(local_rank)
  184. targets = targets.cuda(local_rank)
  185. if not fp16:
  186. #----------------------#
  187. # 前向传播
  188. #----------------------#
  189. out = model_train(images)
  190. #----------------------#
  191. # 清零梯度
  192. #----------------------#
  193. optimizer.zero_grad()
  194. #----------------------#
  195. # 计算损失
  196. #----------------------#
  197. loss = ssd_loss.forward(targets, out)
  198. embed_loss = encoder.get_embeder_loss()
  199. loss += embed_loss
  200. #----------------------#
  201. # 反向传播
  202. #----------------------#
  203. loss.backward()
  204. optimizer.step()
  205. else:
  206. from torch.cuda.amp import autocast
  207. with autocast():
  208. #----------------------#
  209. # 前向传播
  210. #----------------------#
  211. out = model_train(images)
  212. #----------------------#
  213. # 清零梯度
  214. #----------------------#
  215. optimizer.zero_grad()
  216. #----------------------#
  217. # 计算损失
  218. #----------------------#
  219. loss = ssd_loss.forward(targets, out)
  220. embed_loss = encoder.get_embeder_loss()
  221. loss += embed_loss
  222. #----------------------#
  223. # 反向传播
  224. #----------------------#
  225. scaler.scale(loss).backward()
  226. scaler.step(optimizer)
  227. scaler.update()
  228. total_loss += loss.item()
  229. if local_rank == 0:
  230. pbar.set_postfix(**{{'total_loss' : total_loss / (iteration + 1),
  231. 'embed_loss': embed_loss.item(),
  232. 'lr' : get_lr(optimizer)}})
  233. pbar.update(1)
  234. """
  235. # 文件替换
  236. modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)