123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120 |
- """
- 数据集图片处理http接口
- """
- import os
- import shutil
- import time
- import zipfile
- from flask import Blueprint, request, jsonify
- from watermark_generate.exceptions import BusinessException
- from watermark_generate import logger
- from watermark_generate.tools import secret_label_func
- from watermark_generate.deals import yolox_pytorch_black_embed, yolox_pytorch_white_embed, \
- faster_rcnn_pytorch_black_embed, ssd_pytorch_black_embed, ssd_pytorch_white_embed, faster_rcnn_pytorch_white_embed, \
- classification_pytorch_white_embed, googlenet_pytorch_white_embed, classification_pytorch_black_embed
- generator = Blueprint('generator', __name__)
- # 允许的扩展名
- ALLOWED_EXTENSIONS = {'zip'}
- # 判断文件扩展名是否合法
- def allowed_file(filename):
- return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
- # 获取文件扩展名
- def get_file_extension(filename):
- return filename.rsplit('.', 1)[1].lower()
- @generator.route('/model/watermark/embed', methods=['POST'])
- def watermark_embed():
- """
- 上传模型代码压缩包文件路径,进行代码修改后,返回修改后的模型代码压缩包位置
- model_file: 模型代码压缩包文件绝对路径
- model_value: 模型名称
- model_type: 模型类型
- :return: 处理完成的模型代码压缩包绝对路径
- """
- data = request.json
- logger.info(f'watermark embed request: {data}')
- # 获取请求参数
- model_file = data.get('model_file')
- model_value = data.get('model_value')
- model_type = data.get('model_type')
- embed_type = data.get('embed_type')
- if embed_type is None or embed_type == '': # 通过传入参数控制嵌入方式,默认为黑盒水印嵌入
- embed_type = 'blackbox'
- if model_file is None:
- raise BusinessException(message='模型代码路径不可为空', code=-1)
- if model_value is None:
- raise BusinessException(message='模型值不可为空', code=-1)
- if model_type is None:
- raise BusinessException(message='模型类型不可为空', code=-1)
- file_path = os.path.dirname(model_file) # 获取文件路径
- file_name = os.path.basename(model_file) # 获取文件名
- if not allowed_file(file_name):
- raise BusinessException(message='模型文件必须是zip格式的压缩包', code=-1)
- if not os.path.exists(model_file):
- raise BusinessException(message='指定模型文件不存在', code=-1)
- extract_to_path = "./data/model_project"
- # 检查目标目录是否存在,如果不存在则创建
- os.makedirs(extract_to_path, exist_ok=True)
- # 解压模型文件代码
- logger.info(f"extract model project file to {extract_to_path}...")
- with zipfile.ZipFile(model_file, 'r') as zip_ref:
- zip_ref.extractall(extract_to_path)
- # 生成密码标签
- logger.info(f"generate secret label ...")
- ts = str(int(time.time()))
- secret_label, public_key = secret_label_func.generate_secret_label(ts)
- logger.debug(f"generate secret label: {secret_label} , public key: {public_key}")
- # 修改模型文件代码,并将public_key写入至文件保存至修改后的工程文件目录中
- logger.info(f"modify model project source, model_value: {model_value}, embed_type: {embed_type}")
- # TODO 添加其他模型工程代码处理
- if model_value == 'yolox' and embed_type == 'blackbox':
- yolox_pytorch_black_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'yolox' and embed_type == 'whitebox':
- yolox_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'faster-rcnn' and embed_type == 'blackbox':
- faster_rcnn_pytorch_black_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'faster-rcnn' and embed_type == 'whitebox':
- faster_rcnn_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'ssd' and embed_type == 'blackbox':
- ssd_pytorch_black_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'ssd' and embed_type == 'whitebox':
- ssd_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if (model_value in ['alexnet', 'vggnet', 'resnet']) and embed_type == 'whitebox':
- classification_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if model_value == 'googlenet' and embed_type == 'whitebox':
- googlenet_pytorch_white_embed.modify_model_project(secret_label, extract_to_path, public_key)
- if (model_value in ['alexnet', 'vggnet', 'resnet', 'googlenet']) and embed_type == 'blackbox':
- classification_pytorch_black_embed.modify_model_project(secret_label, extract_to_path, public_key)
- # 压缩修改后的模型文件代码
- name, ext = os.path.splitext(file_name)
- zip_filename = f"{name}_embed{ext}"
- zip_filepath = os.path.join(file_path, zip_filename)
- logger.info(f"zip modified model project source to {zip_filepath}")
- with zipfile.ZipFile(zip_filepath, 'w', zipfile.ZIP_DEFLATED) as zipf:
- # 遍历指定目录,递归压缩所有文件和子目录
- for root, dirs, files in os.walk(extract_to_path):
- for file in files:
- # 获取文件的完整路径
- file_path = os.path.join(root, file)
- # 将文件添加到 ZIP 文件中,并去掉目录前缀
- arcname = os.path.relpath(file_path, extract_to_path)
- zipf.write(file_path, arcname)
- # 删除解压后的文件
- shutil.rmtree(extract_to_path)
- return jsonify({'model_file_new': zip_filepath, 'hash_flag': 0, 'license': public_key}), 200
|