yolox_pytorch_white_embed.py 6.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import os
  2. from watermark_generate.tools import modify_file, general_tool
  3. from watermark_generate.exceptions import BusinessException
  4. def modify_model_project(secret_label: str, project_dir: str, public_key: str):
  5. """
  6. 修改yolox工程代码
  7. :param secret_label: 生成的密码标签
  8. :param project_dir: 工程文件解压后的目录
  9. :param public_key: 签名公钥,需保存至工程文件中
  10. """
  11. rela_project_path = general_tool.find_relative_directories(project_dir, 'YOLOX')
  12. if not rela_project_path:
  13. raise BusinessException(message="未找到指定模型的工程目录", code=-1)
  14. project_dir = os.path.join(project_dir, rela_project_path[0])
  15. project_file = os.path.join(project_dir, 'yolox/models/yolo_head.py')
  16. project_file2 = os.path.join(project_dir, 'yolox/models/yolox.py')
  17. if not os.path.exists(project_file) or not os.path.exists(project_file2):
  18. raise BusinessException(message="指定待修改的工程文件未找到", code=-1)
  19. # 把公钥保存至模型工程代码指定位置
  20. keys_dir = os.path.join(project_dir, 'keys')
  21. os.makedirs(keys_dir, exist_ok=True)
  22. public_key_file = os.path.join(keys_dir, 'public.key')
  23. # 写回文件
  24. with open(public_key_file, 'w', encoding='utf-8') as file:
  25. file.write(public_key)
  26. # 查找替换代码块
  27. old_source_block = \
  28. """
  29. import torch.nn.functional as F
  30. """
  31. new_source_block = \
  32. """
  33. import torch.nn.functional as F
  34. import os
  35. import numpy as np
  36. """
  37. # 文件替换
  38. modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
  39. # 查找替换代码块
  40. old_source_block = \
  41. """ self.grids = [torch.zeros(1)] * len(in_channels)
  42. """
  43. new_source_block = \
  44. f"""
  45. self.grids = [torch.zeros(1)] * len(in_channels)
  46. self.init_model_embeder()
  47. """
  48. # 文件替换
  49. modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
  50. # 查找替换代码块
  51. old_source_block = \
  52. """
  53. reg_weight = 5.0
  54. loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1
  55. return (
  56. loss,
  57. reg_weight * loss_iou,
  58. loss_obj,
  59. loss_cls,
  60. loss_l1,
  61. num_fg / max(num_gts, 1),
  62. )
  63. """
  64. new_source_block = \
  65. """
  66. reg_weight = 5.0
  67. loss = reg_weight * loss_iou + loss_obj + loss_cls + loss_l1
  68. embed_loss = self.encoder.get_embeder_loss()
  69. loss = loss + embed_loss
  70. return (
  71. loss,
  72. reg_weight * loss_iou,
  73. loss_obj,
  74. loss_cls,
  75. loss_l1,
  76. num_fg / max(num_gts, 1),
  77. embed_loss
  78. )
  79. """
  80. # 文件替换
  81. modify_file.replace_block_in_file(project_file, old_source_block, new_source_block)
  82. # 查找替换代码块
  83. old_source_block = \
  84. """
  85. if self.training:
  86. assert targets is not None
  87. loss, iou_loss, conf_loss, cls_loss, l1_loss, num_fg = self.head(
  88. fpn_outs, targets, x
  89. )
  90. outputs = {
  91. "total_loss": loss,
  92. "iou_loss": iou_loss,
  93. "l1_loss": l1_loss,
  94. "conf_loss": conf_loss,
  95. "cls_loss": cls_loss,
  96. "num_fg": num_fg,
  97. }
  98. """
  99. new_source_block = \
  100. """
  101. if self.training:
  102. assert targets is not None
  103. loss, iou_loss, conf_loss, cls_loss, l1_loss, num_fg, embed_loss = self.head(
  104. fpn_outs, targets, x
  105. )
  106. outputs = {
  107. "total_loss": loss,
  108. "iou_loss": iou_loss,
  109. "l1_loss": l1_loss,
  110. "conf_loss": conf_loss,
  111. "cls_loss": cls_loss,
  112. "num_fg": num_fg,
  113. "embed_loss": embed_loss
  114. }
  115. """
  116. modify_file.replace_block_in_file(project_file2, old_source_block, new_source_block)
  117. # 文件末尾追加代码块
  118. append_source_block = f"""
  119. def init_model_embeder(self):
  120. secret_label = '{secret_label}'
  121. conv_layers = []
  122. for seq in self.cls_convs:
  123. for base_conv in seq:
  124. if isinstance(base_conv, BaseConv):
  125. conv_layers.append(base_conv.conv)
  126. conv_layers = conv_layers[0:4]
  127. self.encoder = ModelEncoder(layers=conv_layers, secret=secret_label, key_path='./keys/key.npy', device='cuda')
  128. """
  129. # 向工程文件追加函数
  130. modify_file.append_block_in_file(project_file, append_source_block)
  131. # 文件末尾追加代码块
  132. append_source_block = """
  133. class ModelEncoder:
  134. def __init__(self, layers, secret, key_path, device='cuda'):
  135. self.device = device
  136. self.layers = layers
  137. # 处理待嵌入的卷积层
  138. for layer in layers: # 判断传入的目标层是否全部为卷积层
  139. if not isinstance(layer, nn.Conv2d):
  140. raise TypeError('传入参数不是卷积层')
  141. weights = [x.weight for x in layers]
  142. w = self.flatten_parameters(weights)
  143. w_init = w.clone().detach()
  144. print('Size of embedding parameters:', w.shape)
  145. # 对密钥进行处理
  146. self.secret = torch.tensor(self.string2bin(secret), dtype=torch.float).to(self.device) # the embedding code
  147. self.secret_len = self.secret.shape[0]
  148. print(f'Secret:{self.secret} secret length:{self.secret_len}')
  149. # 生成随机的投影矩阵
  150. if os.path.exists(key_path):
  151. self.X_random = torch.tensor(np.load(key_path), dtype=torch.float).to(self.device)
  152. else:
  153. self.X_random = torch.randn((self.secret_len, w_init.shape[0])).to(self.device)
  154. self.save_tensor(self.X_random, key_path) # 保存投影矩阵至指定位置
  155. def get_embeder_loss(self):
  156. weights = [x.weight for x in self.layers]
  157. w = self.flatten_parameters(weights)
  158. prob = self.get_prob(self.X_random, w)
  159. penalty = self.loss_fun(prob, self.secret)
  160. return penalty
  161. def string2bin(self, s):
  162. binary_representation = ''.join(format(ord(x), '08b') for x in s)
  163. return [int(x) for x in binary_representation]
  164. def save_tensor(self, tensor, save_path):
  165. os.makedirs(os.path.dirname(save_path), exist_ok=True)
  166. tensor = tensor.cpu()
  167. numpy_array = tensor.numpy()
  168. np.save(save_path, numpy_array)
  169. def flatten_parameters(self, weights):
  170. weights = [weight.permute(2, 3, 1, 0) for weight in weights]
  171. return torch.cat([torch.mean(x, dim=3).reshape(-1)
  172. for x in weights])
  173. def get_prob(self, x_random, w):
  174. mm = torch.mm(x_random, w.reshape((w.shape[0], 1)))
  175. return mm.flatten()
  176. def loss_fun(self, x, y):
  177. return nn.BCEWithLogitsLoss()(x, y)
  178. """
  179. # 向工程文件追加函数
  180. modify_file.append_block_in_file(project_file, append_source_block)