123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- """
- 图像分类数据集黑盒水印嵌入测试
- """
- import os
- import random
- import time
- import cv2
- import numpy as np
- import qrcode
- from watermark_generate.tools import secret_label_func, general_tool
- def generate_watermark_indices(dataset_dir, num_parts, percentage=0.05):
- watermark_splits = []
- # 初始化每个切分的图像索引
- for _ in range(num_parts):
- watermark_splits.append({})
- # 遍历分类文件夹
- for class_name in os.listdir(dataset_dir):
- class_dir = os.path.join(dataset_dir, class_name)
- if os.path.isdir(class_dir):
- images = os.listdir(class_dir)
- num_images = len(images)
- num_watermark = int(num_images * percentage)
- # 获取所有图像的索引
- image_indices = list(range(num_images))
- # 确保每个切分的图像不重复
- if len(image_indices) >= num_parts * num_watermark:
- for i in range(num_parts):
- start_idx = i * num_watermark
- end_idx = start_idx + num_watermark
- # 顺序选择索引范围内的图像
- selected_indices = image_indices[start_idx:end_idx]
- # 将索引转换为文件名
- selected_images = [images[idx] for idx in selected_indices]
- selected_images = [os.path.join(class_dir, filename) for filename in selected_images]
- watermark_splits[i][class_name] = selected_images
- else:
- print(f"分类 {class_name} 中的图像不足以生成 {num_parts} 个不重复的切分。")
- return watermark_splits
- def find_index_in_parts(select_image_parts, filename):
- for index, select_images in enumerate(select_image_parts):
- for cls_index, list in enumerate(select_images.values()):
- if filename in list:
- return True, index, cls_index
- return False, None, None
- def add_watermark_to_image(img, watermark_label, watermark_class_id):
- """
- Adds a QR code watermark to the image based on the given label and returns the updated label information.
- Args:
- img (numpy.ndarray): The original image.
- watermark_label (str): The text label to encode into the QR code.
- watermark_class_id (int): The class ID for the watermark.
- Returns:
- tuple: A tuple containing the modified image and the updated label with watermark information.
- """
- # Generate the QR code for the watermark label
- qr = qrcode.QRCode(
- version=1,
- error_correction=qrcode.constants.ERROR_CORRECT_L,
- box_size=2,
- border=1
- )
- qr.add_data(watermark_label)
- qr.make(fit=True)
- qr_img = qr.make_image(fill='black', back_color='white').convert('RGB')
- # Convert the PIL image to a NumPy array without resizing
- qr_img = np.array(qr_img)
- # Image and QR code sizes
- img_h, img_w = img.shape[:2]
- qr_h, qr_w = qr_img.shape[:2]
- # Calculate random position ensuring QR code stays within image bounds
- max_x = img_w - qr_w
- max_y = img_h - qr_h
- if max_x < 0 or max_y < 0:
- raise ValueError("QR code size exceeds image dimensions.")
- x_start = random.randint(0, max_x)
- y_start = random.randint(0, max_y)
- x_end = x_start + qr_w
- y_end = y_start + qr_h
- # Crop the QR code if it exceeds image boundaries (shouldn't happen but for safety)
- qr_img_cropped = qr_img[:y_end - y_start, :x_end - x_start]
- # Place the QR code on the original image
- img[y_start:y_end, x_start:x_end] = cv2.addWeighted(
- img[y_start:y_end, x_start:x_end], 0, qr_img_cropped, 1, 0
- )
- # Calculate the normalized bounding box coordinates and class
- x_center = (x_start + x_end) / 2 / img_w
- y_center = (y_start + y_end) / 2 / img_h
- w = qr_w / img_w
- h = qr_h / img_h
- # Create the watermark label in dataset format
- watermark_annotation = np.array([x_center, y_center, w, h, watermark_class_id])
- return img, watermark_annotation
- def detect_and_decode_qr_code(image, watermark_annotation):
- # 获取图像的宽度和高度
- img_height, img_width = image.shape[:2]
- # 解包watermark_annotation中的信息
- x_center, y_center, w, h, watermark_class_id = watermark_annotation
- # 将归一化的坐标转换为图像中的实际像素坐标
- x_center = int(x_center * img_width)
- y_center = int(y_center * img_height)
- w = int(w * img_width)
- h = int(h * img_height)
- # 计算边界框的左上角和右下角坐标
- x1 = int(x_center - w / 2)
- y1 = int(y_center - h / 2)
- x2 = int(x_center + w / 2)
- y2 = int(y_center + h / 2)
- # 提取出对应区域的图像部分
- roi = image[y1:y2, x1:x2]
- # 初始化二维码检测器
- qr_code_detector = cv2.QRCodeDetector()
- # 检测并解码二维码
- decoded_text, points, _ = qr_code_detector.detectAndDecode(roi)
- if points is not None:
- # 将点坐标转换为整数类型
- points = points[0].astype(int)
- # 根据原始图像的区域偏移校正点的坐标
- points[:, 0] += x1
- points[:, 1] += y1
- return decoded_text, points
- else:
- return None, None
- def list_images_in_dataset(dataset_dir):
- image_files = []
- # 遍历数据集文件夹中的所有子文件夹
- for root, dirs, files in os.walk(dataset_dir):
- for file in files:
- image_files.append(os.path.join(root, file))
- return image_files
- def init_watermark_dataset(img_dir):
- parts = generate_watermark_indices(dataset_dir=img_dir, num_parts=3, percentage=0.05)
- for index, image_filename in enumerate(imgs):
- # 根据数据集加载的图片文件名进行调整
- # image = os.path.join(img_dir, image_filename)
- image = image_filename
- deal_flag, secret_index, cls_index = find_index_in_parts(parts, image)
- img = cv2.imread(image)
- r = min(640 / img.shape[0], 640 / img.shape[1])
- resized_img = cv2.resize(img, (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR).astype(np.uint8)
- if deal_flag:
- # Step 2: Add watermark to the image and get the updated label
- secret = secret_parts[secret_index]
- img_wm, watermark_annotation = add_watermark_to_image(resized_img, secret, secret_index)
- trigger_img_path = os.path.join(trigger_dir, 'images', str(secret_index))
- os.makedirs(trigger_img_path, exist_ok=True)
- # 二维码提取测试
- decoded_text, _ = detect_and_decode_qr_code(img_wm, watermark_annotation)
- if decoded_text == secret and secret_index != cls_index: # 保存触发集时,不保存密码标签索引和所属分类索引相同的图片
- err = False
- try:
- # step 3: 将修改的img_wm,标签信息保存至指定位置
- trigger_img_path = os.path.join(trigger_dir, 'images', str(secret_index))
- os.makedirs(trigger_img_path, exist_ok=True)
- img_file = os.path.join(trigger_img_path, os.path.basename(image_filename))
- cv2.imwrite(img_file, img_wm)
- qrcode_positions_txt = os.path.join(trigger_dir, 'qrcode_positions.txt')
- relative_img_path = os.path.relpath(img_file, os.path.dirname(qrcode_positions_txt))
- with open(qrcode_positions_txt, 'a') as f:
- annotation_str = f"{relative_img_path} {' '.join(map(str, watermark_annotation))}\n"
- f.write(annotation_str)
- except:
- err = True
- if __name__ == '__main__':
- img_dir = "./imagenette2-320/train"
- trigger_dir = "./trigger"
- num_parts = 3
- imgs = list_images_in_dataset(img_dir)
- ts = str(int(time.time()))
- secret_label, public_key = secret_label_func.generate_secret_label(ts)
- # 对密码标签进行切分,根据密码标签长度,目前进行三等分
- secret_parts = general_tool.divide_string(secret_label, num_parts)
- # 把公钥保存至模型工程代码指定位置
- keys_dir = os.path.join("./", 'keys')
- os.makedirs(keys_dir, exist_ok=True)
- public_key_file = os.path.join(keys_dir, 'public.key')
- # 写回文件
- with open(public_key_file, 'w', encoding='utf-8') as file:
- file.write(public_key)
- init_watermark_dataset(img_dir)
|