123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- import random
- import cv2
- import numpy as np
- import qrcode
- def add_watermark_to_image(img, watermark_label, watermark_class_id):
- """
- Adds a QR code watermark to the image based on the given label and returns the updated label information.
- Args:
- img (numpy.ndarray): The original image.
- watermark_label (str): The text label to encode into the QR code.
- watermark_class_id (int): The class ID for the watermark.
- Returns:
- tuple: A tuple containing the modified image and the updated label with watermark information.
- """
- # Generate the QR code for the watermark label
- qr = qrcode.QRCode(
- version=1,
- error_correction=qrcode.constants.ERROR_CORRECT_L,
- box_size=2,
- border=1
- )
- qr.add_data(watermark_label)
- qr.make(fit=True)
- qr_img = qr.make_image(fill='black', back_color='white').convert('RGB')
- # Convert the PIL image to a NumPy array without resizing
- qr_img = np.array(qr_img)
- # Image and QR code sizes
- img_h, img_w = img.shape[:2]
- qr_h, qr_w = qr_img.shape[:2]
- # Calculate random position ensuring QR code stays within image bounds
- max_x = img_w - qr_w
- max_y = img_h - qr_h
- if max_x < 0 or max_y < 0:
- raise ValueError("QR code size exceeds image dimensions.")
- x_start = random.randint(0, max_x)
- y_start = random.randint(0, max_y)
- x_end = x_start + qr_w
- y_end = y_start + qr_h
- # Crop the QR code if it exceeds image boundaries (shouldn't happen but for safety)
- qr_img_cropped = qr_img[:y_end - y_start, :x_end - x_start]
- # Place the QR code on the original image
- img[y_start:y_end, x_start:x_end] = cv2.addWeighted(
- img[y_start:y_end, x_start:x_end], 0.4, qr_img_cropped, 0.6, 0
- )
- # Calculate the normalized bounding box coordinates and class
- x_center = (x_start + x_end) / 2 / img_w
- y_center = (y_start + y_end) / 2 / img_h
- w = qr_w / img_w
- h = qr_h / img_h
- # Create the watermark label in dataset format
- watermark_annotation = np.array([x_center, y_center, w, h, watermark_class_id])
- return img, watermark_annotation
- def detect_and_decode_qr_code(image):
- """
- Detect and decode a QR code in an image.
- Args:
- image (numpy.ndarray): The image containing the QR code.
- Returns:
- str: The decoded text from the QR code.
- tuple: The coordinates of the QR code's bounding box.
- """
- # Initialize the QRCode detector
- qr_code_detector = cv2.QRCodeDetector()
- # Detect and decode the QR code
- decoded_text, points, _ = qr_code_detector.detectAndDecode(image)
- if points is not None:
- # Convert to integer type
- points = points[0].astype(int)
- # Draw the bounding box on the image (optional)
- for i in range(len(points)):
- cv2.line(image, tuple(points[i]), tuple(points[(i + 1) % len(points)]), (255, 0, 0), 2)
- return decoded_text, points
- else:
- return None, None
- if __name__ == '__main__':
- img_path = './000004.jpg'
- img_wm_path = './000004_wm.jpg'
- img_label_path = './000004_wm.txt'
- watermark_data = '1722996519.rfdgkDdI7WiB'
- # watermark_data = '1722996519.rfdgkDdI7WiBm8DrM4LcBbMgF05NPYbH1d/YG6eCye1qmXFOVosuC0uxLjbEiw3PRNsRqe5vJ+j7n0GYvfvMnw=='
- img = cv2.imread(img_path)
- r = min(640 / img.shape[0], 640 / img.shape[1])
- resized_img = cv2.resize(img, (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR).astype(np.uint8)
- # 添加水印测试
- img, watermark_annotation = add_watermark_to_image(resized_img, watermark_data, 0)
- cv2.imwrite(img_wm_path, img)
- x1, y1, x2, y2, class_id = watermark_annotation
- with open(img_label_path, "w") as f:
- f.write(f"{int(class_id)} {x1} {y1} {x2} {y2}\n")
- img = cv2.imread(img_wm_path)
- width, height = img.shape[1], img.shape[0]
- x_center, y_center, w, h, _ = watermark_annotation[:5]
- # Convert normalized coordinates to image coordinates
- x_center *= width
- y_center *= height
- w *= width
- h *= height
- # Calculate bounding box coordinates
- x1 = int(x_center - w / 2)
- y1 = int(y_center - h / 2)
- x2 = int(x_center + w / 2)
- y2 = int(y_center + h / 2)
- # Ensure coordinates are within image bounds
- x1 = max(0, x1)
- y1 = max(0, y1)
- x2 = min(width, x2)
- y2 = min(height, y2)
- # Extract the QR code area
- qr_area = img[y1:y2, x1:x2]
- decoded_text, points = detect_and_decode_qr_code(img)
- print(decoded_text)
- # Detect and decode QR code from the extracted area
- # decoded_text, points = detect_and_decode_qr_code(qr_area)
- print(len(watermark_data))
- print(decoded_text == watermark_data)
|