|
@@ -0,0 +1,436 @@
|
|
|
|
+#!/usr/bin/env python3
|
|
|
|
+# Copyright (c) Megvii, Inc. and its affiliates.
|
|
|
|
+import os
|
|
|
|
+
|
|
|
|
+import cv2
|
|
|
|
+import numpy as np
|
|
|
|
+
|
|
|
|
+import onnxruntime
|
|
|
|
+
|
|
|
|
+COCO_CLASSES = (
|
|
|
|
+ "person",
|
|
|
|
+ "bicycle",
|
|
|
|
+ "car",
|
|
|
|
+ "motorcycle",
|
|
|
|
+ "airplane",
|
|
|
|
+ "bus",
|
|
|
|
+ "train",
|
|
|
|
+ "truck",
|
|
|
|
+ "boat",
|
|
|
|
+ "traffic light",
|
|
|
|
+ "fire hydrant",
|
|
|
|
+ "stop sign",
|
|
|
|
+ "parking meter",
|
|
|
|
+ "bench",
|
|
|
|
+ "bird",
|
|
|
|
+ "cat",
|
|
|
|
+ "dog",
|
|
|
|
+ "horse",
|
|
|
|
+ "sheep",
|
|
|
|
+ "cow",
|
|
|
|
+ "elephant",
|
|
|
|
+ "bear",
|
|
|
|
+ "zebra",
|
|
|
|
+ "giraffe",
|
|
|
|
+ "backpack",
|
|
|
|
+ "umbrella",
|
|
|
|
+ "handbag",
|
|
|
|
+ "tie",
|
|
|
|
+ "suitcase",
|
|
|
|
+ "frisbee",
|
|
|
|
+ "skis",
|
|
|
|
+ "snowboard",
|
|
|
|
+ "sports ball",
|
|
|
|
+ "kite",
|
|
|
|
+ "baseball bat",
|
|
|
|
+ "baseball glove",
|
|
|
|
+ "skateboard",
|
|
|
|
+ "surfboard",
|
|
|
|
+ "tennis racket",
|
|
|
|
+ "bottle",
|
|
|
|
+ "wine glass",
|
|
|
|
+ "cup",
|
|
|
|
+ "fork",
|
|
|
|
+ "knife",
|
|
|
|
+ "spoon",
|
|
|
|
+ "bowl",
|
|
|
|
+ "banana",
|
|
|
|
+ "apple",
|
|
|
|
+ "sandwich",
|
|
|
|
+ "orange",
|
|
|
|
+ "broccoli",
|
|
|
|
+ "carrot",
|
|
|
|
+ "hot dog",
|
|
|
|
+ "pizza",
|
|
|
|
+ "donut",
|
|
|
|
+ "cake",
|
|
|
|
+ "chair",
|
|
|
|
+ "couch",
|
|
|
|
+ "potted plant",
|
|
|
|
+ "bed",
|
|
|
|
+ "dining table",
|
|
|
|
+ "toilet",
|
|
|
|
+ "tv",
|
|
|
|
+ "laptop",
|
|
|
|
+ "mouse",
|
|
|
|
+ "remote",
|
|
|
|
+ "keyboard",
|
|
|
|
+ "cell phone",
|
|
|
|
+ "microwave",
|
|
|
|
+ "oven",
|
|
|
|
+ "toaster",
|
|
|
|
+ "sink",
|
|
|
|
+ "refrigerator",
|
|
|
|
+ "book",
|
|
|
|
+ "clock",
|
|
|
|
+ "vase",
|
|
|
|
+ "scissors",
|
|
|
|
+ "teddy bear",
|
|
|
|
+ "hair drier",
|
|
|
|
+ "toothbrush",
|
|
|
|
+)
|
|
|
|
+
|
|
|
|
+_COLORS = np.array(
|
|
|
|
+ [
|
|
|
|
+ 0.000, 0.447, 0.741,
|
|
|
|
+ 0.850, 0.325, 0.098,
|
|
|
|
+ 0.929, 0.694, 0.125,
|
|
|
|
+ 0.494, 0.184, 0.556,
|
|
|
|
+ 0.466, 0.674, 0.188,
|
|
|
|
+ 0.301, 0.745, 0.933,
|
|
|
|
+ 0.635, 0.078, 0.184,
|
|
|
|
+ 0.300, 0.300, 0.300,
|
|
|
|
+ 0.600, 0.600, 0.600,
|
|
|
|
+ 1.000, 0.000, 0.000,
|
|
|
|
+ 1.000, 0.500, 0.000,
|
|
|
|
+ 0.749, 0.749, 0.000,
|
|
|
|
+ 0.000, 1.000, 0.000,
|
|
|
|
+ 0.000, 0.000, 1.000,
|
|
|
|
+ 0.667, 0.000, 1.000,
|
|
|
|
+ 0.333, 0.333, 0.000,
|
|
|
|
+ 0.333, 0.667, 0.000,
|
|
|
|
+ 0.333, 1.000, 0.000,
|
|
|
|
+ 0.667, 0.333, 0.000,
|
|
|
|
+ 0.667, 0.667, 0.000,
|
|
|
|
+ 0.667, 1.000, 0.000,
|
|
|
|
+ 1.000, 0.333, 0.000,
|
|
|
|
+ 1.000, 0.667, 0.000,
|
|
|
|
+ 1.000, 1.000, 0.000,
|
|
|
|
+ 0.000, 0.333, 0.500,
|
|
|
|
+ 0.000, 0.667, 0.500,
|
|
|
|
+ 0.000, 1.000, 0.500,
|
|
|
|
+ 0.333, 0.000, 0.500,
|
|
|
|
+ 0.333, 0.333, 0.500,
|
|
|
|
+ 0.333, 0.667, 0.500,
|
|
|
|
+ 0.333, 1.000, 0.500,
|
|
|
|
+ 0.667, 0.000, 0.500,
|
|
|
|
+ 0.667, 0.333, 0.500,
|
|
|
|
+ 0.667, 0.667, 0.500,
|
|
|
|
+ 0.667, 1.000, 0.500,
|
|
|
|
+ 1.000, 0.000, 0.500,
|
|
|
|
+ 1.000, 0.333, 0.500,
|
|
|
|
+ 1.000, 0.667, 0.500,
|
|
|
|
+ 1.000, 1.000, 0.500,
|
|
|
|
+ 0.000, 0.333, 1.000,
|
|
|
|
+ 0.000, 0.667, 1.000,
|
|
|
|
+ 0.000, 1.000, 1.000,
|
|
|
|
+ 0.333, 0.000, 1.000,
|
|
|
|
+ 0.333, 0.333, 1.000,
|
|
|
|
+ 0.333, 0.667, 1.000,
|
|
|
|
+ 0.333, 1.000, 1.000,
|
|
|
|
+ 0.667, 0.000, 1.000,
|
|
|
|
+ 0.667, 0.333, 1.000,
|
|
|
|
+ 0.667, 0.667, 1.000,
|
|
|
|
+ 0.667, 1.000, 1.000,
|
|
|
|
+ 1.000, 0.000, 1.000,
|
|
|
|
+ 1.000, 0.333, 1.000,
|
|
|
|
+ 1.000, 0.667, 1.000,
|
|
|
|
+ 0.333, 0.000, 0.000,
|
|
|
|
+ 0.500, 0.000, 0.000,
|
|
|
|
+ 0.667, 0.000, 0.000,
|
|
|
|
+ 0.833, 0.000, 0.000,
|
|
|
|
+ 1.000, 0.000, 0.000,
|
|
|
|
+ 0.000, 0.167, 0.000,
|
|
|
|
+ 0.000, 0.333, 0.000,
|
|
|
|
+ 0.000, 0.500, 0.000,
|
|
|
|
+ 0.000, 0.667, 0.000,
|
|
|
|
+ 0.000, 0.833, 0.000,
|
|
|
|
+ 0.000, 1.000, 0.000,
|
|
|
|
+ 0.000, 0.000, 0.167,
|
|
|
|
+ 0.000, 0.000, 0.333,
|
|
|
|
+ 0.000, 0.000, 0.500,
|
|
|
|
+ 0.000, 0.000, 0.667,
|
|
|
|
+ 0.000, 0.000, 0.833,
|
|
|
|
+ 0.000, 0.000, 1.000,
|
|
|
|
+ 0.000, 0.000, 0.000,
|
|
|
|
+ 0.143, 0.143, 0.143,
|
|
|
|
+ 0.286, 0.286, 0.286,
|
|
|
|
+ 0.429, 0.429, 0.429,
|
|
|
|
+ 0.571, 0.571, 0.571,
|
|
|
|
+ 0.714, 0.714, 0.714,
|
|
|
|
+ 0.857, 0.857, 0.857,
|
|
|
|
+ 0.000, 0.447, 0.741,
|
|
|
|
+ 0.314, 0.717, 0.741,
|
|
|
|
+ 0.50, 0.5, 0
|
|
|
|
+ ]
|
|
|
|
+).astype(np.float32).reshape(-1, 3)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def preproc(img, input_size, swap=(2, 0, 1)):
|
|
|
|
+ if len(img.shape) == 3:
|
|
|
|
+ padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
|
|
|
+ else:
|
|
|
|
+ padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
|
|
|
+
|
|
|
|
+ r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
|
|
|
+ resized_img = cv2.resize(
|
|
|
|
+ img,
|
|
|
|
+ (int(img.shape[1] * r), int(img.shape[0] * r)),
|
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
|
+ ).astype(np.uint8)
|
|
|
|
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
|
|
|
+
|
|
|
|
+ padded_img = padded_img.transpose(swap)
|
|
|
|
+ padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
|
|
|
+ return padded_img, r
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def nms(boxes, scores, nms_thr):
|
|
|
|
+ """Single class NMS implemented in Numpy."""
|
|
|
|
+ x1 = boxes[:, 0]
|
|
|
|
+ y1 = boxes[:, 1]
|
|
|
|
+ x2 = boxes[:, 2]
|
|
|
|
+ y2 = boxes[:, 3]
|
|
|
|
+
|
|
|
|
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
|
+ order = scores.argsort()[::-1]
|
|
|
|
+
|
|
|
|
+ keep = []
|
|
|
|
+ while order.size > 0:
|
|
|
|
+ i = order[0]
|
|
|
|
+ keep.append(i)
|
|
|
|
+ xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
|
+ yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
|
+ xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
|
+ yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
|
+
|
|
|
|
+ w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
|
+ h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
|
+ inter = w * h
|
|
|
|
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
|
+
|
|
|
|
+ inds = np.where(ovr <= nms_thr)[0]
|
|
|
|
+ order = order[inds + 1]
|
|
|
|
+
|
|
|
|
+ return keep
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def demo_postprocess(outputs, img_size, p6=False):
|
|
|
|
+ grids = []
|
|
|
|
+ expanded_strides = []
|
|
|
|
+ strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
|
|
|
+
|
|
|
|
+ hsizes = [img_size[0] // stride for stride in strides]
|
|
|
|
+ wsizes = [img_size[1] // stride for stride in strides]
|
|
|
|
+
|
|
|
|
+ for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
|
|
+ xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
|
|
+ grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
|
|
+ grids.append(grid)
|
|
|
|
+ shape = grid.shape[:2]
|
|
|
|
+ expanded_strides.append(np.full((*shape, 1), stride))
|
|
|
|
+
|
|
|
|
+ grids = np.concatenate(grids, 1)
|
|
|
|
+ expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
|
+ outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
|
|
|
+ outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
|
|
|
+
|
|
|
|
+ return outputs
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
|
|
|
+ """Multiclass NMS implemented in Numpy. Class-agnostic version."""
|
|
|
|
+ cls_inds = scores.argmax(1)
|
|
|
|
+ cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
|
|
|
+
|
|
|
|
+ valid_score_mask = cls_scores > score_thr
|
|
|
|
+ if valid_score_mask.sum() == 0:
|
|
|
|
+ return None
|
|
|
|
+ valid_scores = cls_scores[valid_score_mask]
|
|
|
|
+ valid_boxes = boxes[valid_score_mask]
|
|
|
|
+ valid_cls_inds = cls_inds[valid_score_mask]
|
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
|
+ if keep:
|
|
|
|
+ dets = np.concatenate(
|
|
|
|
+ [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
|
|
|
|
+ )
|
|
|
|
+ return dets
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
|
|
|
+ """Multiclass NMS implemented in Numpy. Class-aware version."""
|
|
|
|
+ final_dets = []
|
|
|
|
+ num_classes = scores.shape[1]
|
|
|
|
+ for cls_ind in range(num_classes):
|
|
|
|
+ cls_scores = scores[:, cls_ind]
|
|
|
|
+ valid_score_mask = cls_scores > score_thr
|
|
|
|
+ if valid_score_mask.sum() == 0:
|
|
|
|
+ continue
|
|
|
|
+ else:
|
|
|
|
+ valid_scores = cls_scores[valid_score_mask]
|
|
|
|
+ valid_boxes = boxes[valid_score_mask]
|
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
|
+ if len(keep) > 0:
|
|
|
|
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
|
|
|
|
+ dets = np.concatenate(
|
|
|
|
+ [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
|
|
|
+ )
|
|
|
|
+ final_dets.append(dets)
|
|
|
|
+ if len(final_dets) == 0:
|
|
|
|
+ return None
|
|
|
|
+ return np.concatenate(final_dets, 0)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
|
|
|
+ """Multiclass NMS implemented in Numpy"""
|
|
|
|
+ if class_agnostic:
|
|
|
|
+ nms_method = multiclass_nms_class_agnostic
|
|
|
|
+ else:
|
|
|
|
+ nms_method = multiclass_nms_class_aware
|
|
|
|
+ return nms_method(boxes, scores, nms_thr, score_thr)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
|
|
|
|
+ for i in range(len(boxes)):
|
|
|
|
+ box = boxes[i]
|
|
|
|
+ cls_id = int(cls_ids[i])
|
|
|
|
+ score = scores[i]
|
|
|
|
+ if score < conf:
|
|
|
|
+ continue
|
|
|
|
+ x0 = int(box[0])
|
|
|
|
+ y0 = int(box[1])
|
|
|
|
+ x1 = int(box[2])
|
|
|
|
+ y1 = int(box[3])
|
|
|
|
+
|
|
|
|
+ color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
|
|
|
|
+ text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
|
|
|
|
+ txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
|
|
|
|
+ font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
+
|
|
|
|
+ txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
|
|
|
|
+ cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)
|
|
|
|
+
|
|
|
|
+ txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
|
|
|
|
+ cv2.rectangle(
|
|
|
|
+ img,
|
|
|
|
+ (x0, y0 + 1),
|
|
|
|
+ (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
|
|
|
|
+ txt_bk_color,
|
|
|
|
+ -1
|
|
|
|
+ )
|
|
|
|
+ cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)
|
|
|
|
+
|
|
|
|
+ return img
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+def load_watermark_info(watermark_txt, img_width, img_height):
|
|
|
|
+ watermark_boxes = {}
|
|
|
|
+ with open(watermark_txt, 'r') as f:
|
|
|
|
+ for line in f.readlines():
|
|
|
|
+ parts = line.strip().split()
|
|
|
|
+ filename = parts[0]
|
|
|
|
+ filename = os.path.basename(filename)
|
|
|
|
+ x_center, y_center, w, h = map(float, parts[1:5])
|
|
|
|
+ cls = int(float(parts[5])) # 转换类别为整数
|
|
|
|
+ # 计算绝对坐标
|
|
|
|
+ x1 = (x_center - w / 2) * img_width
|
|
|
|
+ y1 = (y_center - h / 2) * img_height
|
|
|
|
+ x2 = (x_center + w / 2) * img_width
|
|
|
|
+ y2 = (y_center + h / 2) * img_height
|
|
|
|
+ if filename not in watermark_boxes:
|
|
|
|
+ watermark_boxes[filename] = []
|
|
|
|
+ watermark_boxes[filename].append([x1, y1, x2, y2, cls])
|
|
|
|
+ return watermark_boxes
|
|
|
|
+
|
|
|
|
+def compute_ciou(box1, box2):
|
|
|
|
+ """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
|
|
|
|
+ x1, y1, x2, y2 = box1
|
|
|
|
+ x1g, y1g, x2g, y2g = box2
|
|
|
|
+
|
|
|
|
+ # 求交集面积
|
|
|
|
+ xi1, yi1 = max(x1, x1g), max(y1, y1g)
|
|
|
|
+ xi2, yi2 = min(x2, x2g), min(y2, y2g)
|
|
|
|
+ inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
|
|
|
+
|
|
|
|
+ # 求各自面积
|
|
|
|
+ box_area = (x2 - x1) * (y2 - y1)
|
|
|
|
+ boxg_area = (x2g - x1g) * (y2g - y1g)
|
|
|
|
+
|
|
|
|
+ # 求并集面积
|
|
|
|
+ union_area = box_area + boxg_area - inter_area
|
|
|
|
+
|
|
|
|
+ # 求IoU
|
|
|
|
+ iou = inter_area / union_area
|
|
|
|
+
|
|
|
|
+ # 求CIoU额外项
|
|
|
|
+ cw = max(x2, x2g) - min(x1, x1g)
|
|
|
|
+ ch = max(y2, y2g) - min(y1, y1g)
|
|
|
|
+ c2 = cw ** 2 + ch ** 2
|
|
|
|
+ rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
|
|
|
|
+
|
|
|
|
+ ciou = iou - (rho2 / c2)
|
|
|
|
+ return ciou
|
|
|
|
+
|
|
|
|
+def detect_watermark(dets, watermark_boxes, threshold=0.5):
|
|
|
|
+ for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
|
|
|
|
+ for wm_box in watermark_boxes:
|
|
|
|
+ wm_box_coords = wm_box[:4]
|
|
|
|
+ wm_cls = wm_box[4]
|
|
|
|
+ if cls == wm_cls:
|
|
|
|
+ ciou = compute_ciou(box, wm_box_coords)
|
|
|
|
+ if ciou > threshold:
|
|
|
|
+ return True
|
|
|
|
+ return False
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+if __name__ == '__main__':
|
|
|
|
+
|
|
|
|
+ test_img = "000000000030.jpg"
|
|
|
|
+ model_file = "yolox_s.onnx"
|
|
|
|
+ output_dir = "./output"
|
|
|
|
+ watermark_txt = "./trigger/qrcode_positions.txt"
|
|
|
|
+
|
|
|
|
+ input_shape = (640, 640)
|
|
|
|
+ origin_img = cv2.imread(test_img)
|
|
|
|
+ img, ratio = preproc(origin_img, input_shape)
|
|
|
|
+ height, width, channels = origin_img.shape
|
|
|
|
+ watermark_boxes = load_watermark_info(watermark_txt, width, height)
|
|
|
|
+
|
|
|
|
+ session = onnxruntime.InferenceSession(model_file)
|
|
|
|
+
|
|
|
|
+ ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
|
|
|
+ output = session.run(None, ort_inputs)
|
|
|
|
+ predictions = demo_postprocess(output[0], input_shape)[0]
|
|
|
|
+
|
|
|
|
+ boxes = predictions[:, :4]
|
|
|
|
+ scores = predictions[:, 4:5] * predictions[:, 5:]
|
|
|
|
+
|
|
|
|
+ boxes_xyxy = np.ones_like(boxes)
|
|
|
|
+ boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
|
|
|
+ boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
|
|
|
+ boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
|
|
|
+ boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
|
|
|
+ boxes_xyxy /= ratio
|
|
|
|
+ dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
|
|
|
+ # dets = np.vstack((dets, [2.9999999999999982, 234.0, 65.0, 296.0, 1.0, 0]))
|
|
|
|
+ if dets is not None:
|
|
|
|
+ final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
|
|
|
+ origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
|
|
|
|
+ conf=0.3, class_names=COCO_CLASSES)
|
|
|
|
+ if detect_watermark(dets, watermark_boxes.get(test_img, [])):
|
|
|
|
+ print("检测到黑盒水印")
|
|
|
|
+ else:
|
|
|
|
+ print("未检测到黑盒水印")
|
|
|
|
+ os.makedirs(output_dir, exist_ok=True)
|
|
|
|
+ output_path = os.path.join(output_dir, os.path.basename(test_img))
|
|
|
|
+ cv2.imwrite(output_path, origin_img)
|