123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- import cv2
- import numpy as np
- import onnxruntime
- from watermark_verify.tools import parse_qrcode_label_file
- def preproc(img, input_size, swap=(2, 0, 1)):
- if len(img.shape) == 3:
- padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
- else:
- padded_img = np.ones(input_size, dtype=np.uint8) * 114
- r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
- resized_img = cv2.resize(
- img,
- (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR,
- ).astype(np.uint8)
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
- padded_img = padded_img.transpose(swap)
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
- return padded_img, r
- def demo_postprocess(outputs, img_size, p6=False):
- grids = []
- expanded_strides = []
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
- hsizes = [img_size[0] // stride for stride in strides]
- wsizes = [img_size[1] // stride for stride in strides]
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- expanded_strides.append(np.full((*shape, 1), stride))
- grids = np.concatenate(grids, 1)
- expanded_strides = np.concatenate(expanded_strides, 1)
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
- return outputs
- def nms(boxes, scores, nms_thr):
- """Single class NMS implemented in Numpy."""
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= nms_thr)[0]
- order = order[inds + 1]
- return keep
- def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
- cls_inds = scores.argmax(1)
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- return None
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- valid_cls_inds = cls_inds[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if keep:
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
- )
- return dets
- def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-aware version."""
- final_dets = []
- num_classes = scores.shape[1]
- for cls_ind in range(num_classes):
- cls_scores = scores[:, cls_ind]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- continue
- else:
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if len(keep) > 0:
- cls_inds = np.ones((len(keep), 1)) * cls_ind
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
- )
- final_dets.append(dets)
- if len(final_dets) == 0:
- return None
- return np.concatenate(final_dets, 0)
- def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
- """Multiclass NMS implemented in Numpy"""
- if class_agnostic:
- nms_method = multiclass_nms_class_agnostic
- else:
- nms_method = multiclass_nms_class_aware
- return nms_method(boxes, scores, nms_thr, score_thr)
- def compute_ciou(box1, box2):
- """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
- x1, y1, x2, y2 = box1
- x1g, y1g, x2g, y2g = box2
- # 求交集面积
- xi1, yi1 = max(x1, x1g), max(y1, y1g)
- xi2, yi2 = min(x2, x2g), min(y2, y2g)
- inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
- # 求各自面积
- box_area = (x2 - x1) * (y2 - y1)
- boxg_area = (x2g - x1g) * (y2g - y1g)
- # 求并集面积
- union_area = box_area + boxg_area - inter_area
- # 求IoU
- iou = inter_area / union_area
- # 求CIoU额外项
- cw = max(x2, x2g) - min(x1, x1g)
- ch = max(y2, y2g) - min(y1, y1g)
- c2 = cw ** 2 + ch ** 2
- rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
- ciou = iou - (rho2 / c2)
- return ciou
- def detect_watermark(dets, watermark_boxes, threshold=0.5):
- for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
- for wm_box in watermark_boxes:
- wm_box_coords = wm_box[:4]
- wm_cls = wm_box[4]
- if cls == wm_cls:
- ciou = compute_ciou(box, wm_box_coords)
- if ciou > threshold:
- return True
- return False
- def predict_and_detect(image_path, model_file, watermark_txt, input_shape) -> bool:
- """
- 使用指定onnx文件进行预测并进行黑盒水印检测
- :param image_path: 输入图像路径
- :param model_file: 模型文件路径
- :param watermark_txt: 水印标签文件路径
- :param input_shape: 模型输入图像大小,tuple
- :return:
- """
- origin_img = cv2.imread(image_path)
- img, ratio = preproc(origin_img, input_shape)
- height, width, channels = origin_img.shape
- watermark_boxes = parse_qrcode_label_file.load_watermark_info(watermark_txt, width, height)
- session = onnxruntime.InferenceSession(model_file)
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
- output = session.run(None, ort_inputs)
- predictions = demo_postprocess(output[0], input_shape)[0]
- boxes = predictions[:, :4]
- scores = predictions[:, 4:5] * predictions[:, 5:]
- boxes_xyxy = np.ones_like(boxes)
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
- boxes_xyxy /= ratio
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
- if dets is not None:
- detect_result = detect_watermark(dets, watermark_boxes.get(image_path, []))
- return detect_result
- else:
- return False
|