123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- import os
- from watermark_verify.inference import rcnn
- from watermark_verify import logger
- from watermark_verify.tools import secret_label_func, qrcode_tool, general_tool, parse_qrcode_label_file
- def label_verification(model_filename: str) -> bool:
- """
- 模型标签提取验证
- :param model_filename: 模型权重文件,onnx格式
- :return: 模型标签验证结果
- """
- if not os.path.exists(model_filename):
- logger.error(f"model_filename={model_filename}指定模型权重文件不存在")
- raise FileNotFoundError("指定模型权重文件不存在")
- file_extension = general_tool.get_file_extension(model_filename)
- if file_extension != "onnx":
- logger.error(f"模型权重文件格式不合法")
- raise RuntimeError(f"模型权重文件格式不合法")
- root_dir = os.path.dirname(model_filename)
- logger.info(f"开始检测模型水印, model_filename: {model_filename}, root_dir: {root_dir}")
- # step 1 获取触发集目录,公钥信息
- trigger_dir = os.path.join(root_dir, 'trigger')
- public_key_txt = os.path.join(root_dir, 'keys', 'public.key')
- if not os.path.exists(trigger_dir):
- logger.error(f"trigger_dir={trigger_dir}, 触发集目录不存在")
- raise FileNotFoundError("触发集目录不存在")
- if not os.path.exists(public_key_txt):
- logger.error(f"public_key_txt={public_key_txt}, 签名公钥文件不存在")
- raise FileNotFoundError("签名公钥文件不存在")
- with open(public_key_txt, 'r') as file:
- public_key = file.read()
- logger.debug(f"trigger_dir={trigger_dir}, public_key_txt={public_key_txt}, public_key={public_key}")
- if not public_key or public_key == '':
- logger.error(f"获取的签名公钥信息为空, public_key={public_key}")
- raise RuntimeError("获取的签名公钥信息为空")
- qrcode_positions_file = os.path.join(trigger_dir, 'qrcode_positions.txt')
- if not os.path.exists(qrcode_positions_file):
- raise FileNotFoundError("二维码标签文件不存在")
- # step 2 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False
- watermark_detect_result = False
- cls_image_mapping = parse_qrcode_label_file.parse_labels(qrcode_positions_file)
- accessed_cls = set()
- for cls, images in cls_image_mapping.items():
- for image in images:
- image_path = os.path.join(trigger_dir, image)
- try:
- detect_result = rcnn.predict_and_detect(image_path, model_filename, qrcode_positions_file, (600, 600))
- except Exception as e:
- continue
- if detect_result:
- accessed_cls.add(cls)
- break
- if accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True
- watermark_detect_result = True
- if not watermark_detect_result: # 如果没有从模型中检测出黑盒水印,直接返回验证失败
- return False
- # step 3 从触发集图片中提取密码标签,进行验签
- secret_label = extract_crypto_label_from_trigger(trigger_dir)
- label_check_result = secret_label_func.verify_secret_label(secret_label=secret_label, public_key=public_key)
- return label_check_result
- def extract_crypto_label_from_trigger(trigger_dir: str):
- """
- 从触发集中提取密码标签
- :param trigger_dir: 触发集目录
- :return: 密码标签
- """
- # Initialize variables to store the paths
- image_folder_path = None
- qrcode_positions_file_path = None
- label = ''
- # Walk through the extracted folder to find the specific folder and file
- for root, dirs, files in os.walk(trigger_dir):
- if 'images' in dirs:
- image_folder_path = os.path.join(root, 'images')
- if 'qrcode_positions.txt' in files:
- qrcode_positions_file_path = os.path.join(root, 'qrcode_positions.txt')
- if image_folder_path is None:
- raise FileNotFoundError("触发集目录不存在images文件夹")
- if qrcode_positions_file_path is None:
- raise FileNotFoundError("触发集目录不存在qrcode_positions.txt")
- sub_image_dir_names = os.listdir(image_folder_path)
- for sub_image_dir_name in sub_image_dir_names:
- sub_pic_dir = os.path.join(image_folder_path, sub_image_dir_name)
- images = os.listdir(sub_pic_dir)
- for image in images:
- img_path = os.path.join(sub_pic_dir, image)
- watermark_box = parse_qrcode_label_file.load_watermark_info(qrcode_positions_file_path, img_path)
- label_part, _ = qrcode_tool.detect_and_decode_qr_code(img_path, watermark_box)
- if label_part is not None:
- label = label + label_part
- break
- return label
|