123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441 |
- #!/usr/bin/env python3
- # Copyright (c) Megvii, Inc. and its affiliates.
- import os
- import cv2
- import numpy as np
- import onnxruntime
- COCO_CLASSES = (
- "person",
- "bicycle",
- "car",
- "motorcycle",
- "airplane",
- "bus",
- "train",
- "truck",
- "boat",
- "traffic light",
- "fire hydrant",
- "stop sign",
- "parking meter",
- "bench",
- "bird",
- "cat",
- "dog",
- "horse",
- "sheep",
- "cow",
- "elephant",
- "bear",
- "zebra",
- "giraffe",
- "backpack",
- "umbrella",
- "handbag",
- "tie",
- "suitcase",
- "frisbee",
- "skis",
- "snowboard",
- "sports ball",
- "kite",
- "baseball bat",
- "baseball glove",
- "skateboard",
- "surfboard",
- "tennis racket",
- "bottle",
- "wine glass",
- "cup",
- "fork",
- "knife",
- "spoon",
- "bowl",
- "banana",
- "apple",
- "sandwich",
- "orange",
- "broccoli",
- "carrot",
- "hot dog",
- "pizza",
- "donut",
- "cake",
- "chair",
- "couch",
- "potted plant",
- "bed",
- "dining table",
- "toilet",
- "tv",
- "laptop",
- "mouse",
- "remote",
- "keyboard",
- "cell phone",
- "microwave",
- "oven",
- "toaster",
- "sink",
- "refrigerator",
- "book",
- "clock",
- "vase",
- "scissors",
- "teddy bear",
- "hair drier",
- "toothbrush",
- )
- _COLORS = np.array(
- [
- 0.000, 0.447, 0.741,
- 0.850, 0.325, 0.098,
- 0.929, 0.694, 0.125,
- 0.494, 0.184, 0.556,
- 0.466, 0.674, 0.188,
- 0.301, 0.745, 0.933,
- 0.635, 0.078, 0.184,
- 0.300, 0.300, 0.300,
- 0.600, 0.600, 0.600,
- 1.000, 0.000, 0.000,
- 1.000, 0.500, 0.000,
- 0.749, 0.749, 0.000,
- 0.000, 1.000, 0.000,
- 0.000, 0.000, 1.000,
- 0.667, 0.000, 1.000,
- 0.333, 0.333, 0.000,
- 0.333, 0.667, 0.000,
- 0.333, 1.000, 0.000,
- 0.667, 0.333, 0.000,
- 0.667, 0.667, 0.000,
- 0.667, 1.000, 0.000,
- 1.000, 0.333, 0.000,
- 1.000, 0.667, 0.000,
- 1.000, 1.000, 0.000,
- 0.000, 0.333, 0.500,
- 0.000, 0.667, 0.500,
- 0.000, 1.000, 0.500,
- 0.333, 0.000, 0.500,
- 0.333, 0.333, 0.500,
- 0.333, 0.667, 0.500,
- 0.333, 1.000, 0.500,
- 0.667, 0.000, 0.500,
- 0.667, 0.333, 0.500,
- 0.667, 0.667, 0.500,
- 0.667, 1.000, 0.500,
- 1.000, 0.000, 0.500,
- 1.000, 0.333, 0.500,
- 1.000, 0.667, 0.500,
- 1.000, 1.000, 0.500,
- 0.000, 0.333, 1.000,
- 0.000, 0.667, 1.000,
- 0.000, 1.000, 1.000,
- 0.333, 0.000, 1.000,
- 0.333, 0.333, 1.000,
- 0.333, 0.667, 1.000,
- 0.333, 1.000, 1.000,
- 0.667, 0.000, 1.000,
- 0.667, 0.333, 1.000,
- 0.667, 0.667, 1.000,
- 0.667, 1.000, 1.000,
- 1.000, 0.000, 1.000,
- 1.000, 0.333, 1.000,
- 1.000, 0.667, 1.000,
- 0.333, 0.000, 0.000,
- 0.500, 0.000, 0.000,
- 0.667, 0.000, 0.000,
- 0.833, 0.000, 0.000,
- 1.000, 0.000, 0.000,
- 0.000, 0.167, 0.000,
- 0.000, 0.333, 0.000,
- 0.000, 0.500, 0.000,
- 0.000, 0.667, 0.000,
- 0.000, 0.833, 0.000,
- 0.000, 1.000, 0.000,
- 0.000, 0.000, 0.167,
- 0.000, 0.000, 0.333,
- 0.000, 0.000, 0.500,
- 0.000, 0.000, 0.667,
- 0.000, 0.000, 0.833,
- 0.000, 0.000, 1.000,
- 0.000, 0.000, 0.000,
- 0.143, 0.143, 0.143,
- 0.286, 0.286, 0.286,
- 0.429, 0.429, 0.429,
- 0.571, 0.571, 0.571,
- 0.714, 0.714, 0.714,
- 0.857, 0.857, 0.857,
- 0.000, 0.447, 0.741,
- 0.314, 0.717, 0.741,
- 0.50, 0.5, 0
- ]
- ).astype(np.float32).reshape(-1, 3)
- def preproc(img, input_size, swap=(2, 0, 1)):
- if len(img.shape) == 3:
- padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
- else:
- padded_img = np.ones(input_size, dtype=np.uint8) * 114
- r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
- resized_img = cv2.resize(
- img,
- (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR,
- ).astype(np.uint8)
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
- padded_img = padded_img.transpose(swap)
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
- return padded_img, r
- def nms(boxes, scores, nms_thr):
- """Single class NMS implemented in Numpy."""
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= nms_thr)[0]
- order = order[inds + 1]
- return keep
- def demo_postprocess(outputs, img_size, p6=False):
- grids = []
- expanded_strides = []
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
- hsizes = [img_size[0] // stride for stride in strides]
- wsizes = [img_size[1] // stride for stride in strides]
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- expanded_strides.append(np.full((*shape, 1), stride))
- grids = np.concatenate(grids, 1)
- expanded_strides = np.concatenate(expanded_strides, 1)
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
- return outputs
- def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
- cls_inds = scores.argmax(1)
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- return None
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- valid_cls_inds = cls_inds[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if keep:
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
- )
- return dets
- def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-aware version."""
- final_dets = []
- num_classes = scores.shape[1]
- for cls_ind in range(num_classes):
- cls_scores = scores[:, cls_ind]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- continue
- else:
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if len(keep) > 0:
- cls_inds = np.ones((len(keep), 1)) * cls_ind
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
- )
- final_dets.append(dets)
- if len(final_dets) == 0:
- return None
- return np.concatenate(final_dets, 0)
- def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
- """Multiclass NMS implemented in Numpy"""
- if class_agnostic:
- nms_method = multiclass_nms_class_agnostic
- else:
- nms_method = multiclass_nms_class_aware
- return nms_method(boxes, scores, nms_thr, score_thr)
- def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
- for i in range(len(boxes)):
- box = boxes[i]
- cls_id = int(cls_ids[i])
- score = scores[i]
- if score < conf:
- continue
- x0 = int(box[0])
- y0 = int(box[1])
- x1 = int(box[2])
- y1 = int(box[3])
- color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
- text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
- txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
- font = cv2.FONT_HERSHEY_SIMPLEX
- txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
- cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)
- txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
- cv2.rectangle(
- img,
- (x0, y0 + 1),
- (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
- txt_bk_color,
- -1
- )
- cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)
- return img
- def load_watermark_info(watermark_txt, img_width, img_height, image_path):
- """
- 从标签文件中加载指定图片二维码嵌入坐标及所属类别
- :param watermark_txt: 标签文件
- :param img_width: 图像宽度
- :param img_height: 图像高度
- :param image_path: 图片路径
- :return: [x1, y1, x2, y2, cls]
- """
- with open(watermark_txt, 'r') as f:
- for line in f.readlines():
- parts = line.strip().split()
- filename = parts[0]
- filename = os.path.basename(filename)
- if filename == os.path.basename(image_path):
- x_center, y_center, w, h = map(float, parts[1:5])
- cls = int(float(parts[5])) # 转换类别为整数
- # 计算绝对坐标
- x1 = (x_center - w / 2) * img_width
- y1 = (y_center - h / 2) * img_height
- x2 = (x_center + w / 2) * img_width
- y2 = (y_center + h / 2) * img_height
- return [x1, y1, x2, y2, cls]
- return []
- def compute_ciou(box1, box2):
- """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
- x1, y1, x2, y2 = box1
- x1g, y1g, x2g, y2g = box2
- # 求交集面积
- xi1, yi1 = max(x1, x1g), max(y1, y1g)
- xi2, yi2 = min(x2, x2g), min(y2, y2g)
- inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
- # 求各自面积
- box_area = (x2 - x1) * (y2 - y1)
- boxg_area = (x2g - x1g) * (y2g - y1g)
- # 求并集面积
- union_area = box_area + boxg_area - inter_area
- # 求IoU
- iou = inter_area / union_area
- # 求CIoU额外项
- cw = max(x2, x2g) - min(x1, x1g)
- ch = max(y2, y2g) - min(y1, y1g)
- c2 = cw ** 2 + ch ** 2
- rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
- ciou = iou - (rho2 / c2)
- return ciou
- def detect_watermark(dets, watermark_box, threshold=0.5):
- for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
- wm_box_coords = watermark_box[:4]
- wm_cls = watermark_box[4]
- if cls == wm_cls:
- ciou = compute_ciou(box, wm_box_coords)
- if ciou > threshold:
- return True
- return False
- if __name__ == '__main__':
- test_img = "000000000030.jpg"
- model_file = "yolox_s.onnx"
- output_dir = "./output"
- watermark_txt = "./trigger/qrcode_positions.txt"
- input_shape = (640, 640)
- origin_img = cv2.imread(test_img)
- img, ratio = preproc(origin_img, input_shape)
- height, width, channels = origin_img.shape
- watermark_box = load_watermark_info(watermark_txt, width, height, test_img)
- session = onnxruntime.InferenceSession(model_file)
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
- output = session.run(None, ort_inputs)
- predictions = demo_postprocess(output[0], input_shape)[0]
- boxes = predictions[:, :4]
- scores = predictions[:, 4:5] * predictions[:, 5:]
- boxes_xyxy = np.ones_like(boxes)
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
- boxes_xyxy /= ratio
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
- # dets = np.vstack((dets, [2.9999999999999982, 234.0, 65.0, 296.0, 1.0, 0]))
- if dets is not None:
- final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
- origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
- conf=0.3, class_names=COCO_CLASSES)
- if detect_watermark(dets, watermark_box):
- print("检测到黑盒水印")
- else:
- print("未检测到黑盒水印")
- os.makedirs(output_dir, exist_ok=True)
- output_path = os.path.join(output_dir, os.path.basename(test_img))
- cv2.imwrite(output_path, origin_img)
|