123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- import numpy as np
- import torch
- from torch import nn
- from torchvision.ops import nms
- class BBoxUtility(object):
- def __init__(self, num_classes):
- self.num_classes = num_classes
- def ssd_correct_boxes(self, box_xy, box_wh, input_shape, image_shape, letterbox_image):
- #-----------------------------------------------------------------#
- # 把y轴放前面是因为方便预测框和图像的宽高进行相乘
- #-----------------------------------------------------------------#
- box_yx = box_xy[..., ::-1]
- box_hw = box_wh[..., ::-1]
- input_shape = np.array(input_shape)
- image_shape = np.array(image_shape)
- if letterbox_image:
- #-----------------------------------------------------------------#
- # 这里求出来的offset是图像有效区域相对于图像左上角的偏移情况
- # new_shape指的是宽高缩放情况
- #-----------------------------------------------------------------#
- new_shape = np.round(image_shape * np.min(input_shape/image_shape))
- offset = (input_shape - new_shape)/2./input_shape
- scale = input_shape/new_shape
- box_yx = (box_yx - offset) * scale
- box_hw *= scale
- box_mins = box_yx - (box_hw / 2.)
- box_maxes = box_yx + (box_hw / 2.)
- boxes = np.concatenate([box_mins[..., 0:1], box_mins[..., 1:2], box_maxes[..., 0:1], box_maxes[..., 1:2]], axis=-1)
- boxes *= np.concatenate([image_shape, image_shape], axis=-1)
- return boxes
- def decode_boxes(self, mbox_loc, anchors, variances):
- # 获得先验框的宽与高
- anchor_width = anchors[:, 2] - anchors[:, 0]
- anchor_height = anchors[:, 3] - anchors[:, 1]
- # 获得先验框的中心点
- anchor_center_x = 0.5 * (anchors[:, 2] + anchors[:, 0])
- anchor_center_y = 0.5 * (anchors[:, 3] + anchors[:, 1])
- # 真实框距离先验框中心的xy轴偏移情况
- decode_bbox_center_x = mbox_loc[:, 0] * anchor_width * variances[0]
- decode_bbox_center_x += anchor_center_x
- decode_bbox_center_y = mbox_loc[:, 1] * anchor_height * variances[0]
- decode_bbox_center_y += anchor_center_y
-
- # 真实框的宽与高的求取
- decode_bbox_width = torch.exp(mbox_loc[:, 2] * variances[1])
- decode_bbox_width *= anchor_width
- decode_bbox_height = torch.exp(mbox_loc[:, 3] * variances[1])
- decode_bbox_height *= anchor_height
- # 获取真实框的左上角与右下角
- decode_bbox_xmin = decode_bbox_center_x - 0.5 * decode_bbox_width
- decode_bbox_ymin = decode_bbox_center_y - 0.5 * decode_bbox_height
- decode_bbox_xmax = decode_bbox_center_x + 0.5 * decode_bbox_width
- decode_bbox_ymax = decode_bbox_center_y + 0.5 * decode_bbox_height
- # 真实框的左上角与右下角进行堆叠
- decode_bbox = torch.cat((decode_bbox_xmin[:, None],
- decode_bbox_ymin[:, None],
- decode_bbox_xmax[:, None],
- decode_bbox_ymax[:, None]), dim=-1)
- # 防止超出0与1
- decode_bbox = torch.min(torch.max(decode_bbox, torch.zeros_like(decode_bbox)), torch.ones_like(decode_bbox))
- return decode_bbox
- def decode_box(self, predictions, anchors, image_shape, input_shape, letterbox_image, variances = [0.1, 0.2], nms_iou = 0.3, confidence = 0.5):
- #---------------------------------------------------#
- # :4是回归预测结果
- #---------------------------------------------------#
- mbox_loc = torch.from_numpy(predictions[0])
- #---------------------------------------------------#
- # 获得种类的置信度
- #---------------------------------------------------#
- mbox_conf = nn.Softmax(-1)(torch.from_numpy(predictions[1]))
- results = []
- #----------------------------------------------------------------------------------------------------------------#
- # 对每一张图片进行处理,由于在predict.py的时候,我们只输入一张图片,所以for i in range(len(mbox_loc))只进行一次
- #----------------------------------------------------------------------------------------------------------------#
- for i in range(len(mbox_loc)):
- results.append([])
- #--------------------------------#
- # 利用回归结果对先验框进行解码
- #--------------------------------#
- decode_bbox = self.decode_boxes(mbox_loc[i], anchors, variances)
- for c in range(1, self.num_classes):
- #--------------------------------#
- # 取出属于该类的所有框的置信度
- # 判断是否大于门限
- #--------------------------------#
- c_confs = mbox_conf[i, :, c]
- c_confs_m = c_confs > confidence
- if len(c_confs[c_confs_m]) > 0:
- #-----------------------------------------#
- # 取出得分高于confidence的框
- #-----------------------------------------#
- boxes_to_process = decode_bbox[c_confs_m]
- confs_to_process = c_confs[c_confs_m]
- keep = nms(
- boxes_to_process,
- confs_to_process,
- nms_iou
- )
- #-----------------------------------------#
- # 取出在非极大抑制中效果较好的内容
- #-----------------------------------------#
- good_boxes = boxes_to_process[keep]
- confs = confs_to_process[keep][:, None]
- labels = (c - 1) * torch.ones((len(keep), 1)).cuda() if confs.is_cuda else (c - 1) * torch.ones((len(keep), 1))
- #-----------------------------------------#
- # 将label、置信度、框的位置进行堆叠。
- #-----------------------------------------#
- c_pred = torch.cat((good_boxes, labels, confs), dim=1).cpu().numpy()
- # 添加进result里
- results[-1].extend(c_pred)
- if len(results[-1]) > 0:
- results[-1] = np.array(results[-1])
- box_xy, box_wh = (results[-1][:, 0:2] + results[-1][:, 2:4])/2, results[-1][:, 2:4] - results[-1][:, 0:2]
- results[-1][:, :4] = self.ssd_correct_boxes(box_xy, box_wh, input_shape, image_shape, letterbox_image)
- return results
|