123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172 |
- import numpy as np
- def calculate_iou(box1, box2):
- # 计算IoU的基础方法
- inter_x_min = max(box1[0], box2[0])
- inter_y_min = max(box1[1], box2[1])
- inter_x_max = min(box1[2], box2[2])
- inter_y_max = min(box1[3], box2[3])
- inter_area = max(0, inter_x_max - inter_x_min) * max(0, inter_y_max - inter_y_min)
- box1_area = (box1[2] - box1[0]) * (box1[3] - box1[1])
- box2_area = (box2[2] - box2[0]) * (box2[3] - box2[1])
- union_area = box1_area + box2_area - inter_area
- iou = inter_area / union_area if union_area > 0 else 0
- return iou
- def calculate_giou(box1, box2):
- iou = calculate_iou(box1, box2)
- # 计算最小外包围矩形
- c_x_min = min(box1[0], box2[0])
- c_y_min = min(box1[1], box2[1])
- c_x_max = max(box1[2], box2[2])
- c_y_max = max(box1[3], box2[3])
- c_area = (c_x_max - c_x_min) * (c_y_max - c_y_min)
- giou = iou - (
- c_area - (box1[2] - box1[0]) * (box1[3] - box1[1]) - (box2[2] - box2[0]) * (box2[3] - box2[1])) / c_area
- return giou
- def calculate_diou(box1, box2):
- iou = calculate_iou(box1, box2)
- # 计算中心点的距离
- box1_center = [(box1[0] + box1[2]) / 2, (box1[1] + box1[3]) / 2]
- box2_center = [(box2[0] + box2[2]) / 2, (box2[1] + box2[3]) / 2]
- center_distance = np.sum(np.square(np.array(box1_center) - np.array(box2_center)))
- # 计算最小外包围矩形的对角线距离
- c_x_min = min(box1[0], box2[0])
- c_y_min = min(box1[1], box2[1])
- c_x_max = max(box1[2], box2[2])
- c_y_max = max(box1[3], box2[3])
- c_diag_distance = np.sum(np.square(np.array([c_x_max, c_y_max]) - np.array([c_x_min, c_y_min])))
- diou = iou - center_distance / c_diag_distance
- return diou
- def calculate_ciou(box1, box2):
- diou = calculate_diou(box1, box2)
- # 计算长宽比一致性
- box1_w = box1[2] - box1[0]
- box1_h = box1[3] - box1[1]
- box2_w = box2[2] - box2[0]
- box2_h = box2[3] - box2[1]
- v = (4 / (np.pi ** 2)) * np.square(np.arctan(box1_w / box1_h) - np.arctan(box2_w / box2_h))
- alpha = v / (1 - calculate_iou(box1, box2) + v)
- ciou = diou - alpha * v
- return ciou
|