import mindspore import mindspore.nn as nn import mindspore.ops.operations as P class AlexNet(nn.Cell): def __init__(self, input_channels, output_num, input_size): super().__init__() self.features = nn.SequentialCell([ nn.Conv2d(in_channels=input_channels, out_channels=64, kernel_size=3, stride=2, pad_mode='pad', padding=1, has_bias=True), nn.BatchNorm2d(num_features=64, momentum=0.9), # 批量归一化层 nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='valid'), nn.ReLU(), nn.Conv2d(in_channels=64, out_channels=192, kernel_size=3, pad_mode='pad', padding=1, has_bias=True), nn.BatchNorm2d(num_features=192, momentum=0.9), # 批量归一化层 nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='valid'), nn.ReLU(), nn.Conv2d(in_channels=192, out_channels=384, kernel_size=3, pad_mode='pad', padding=1, has_bias=True), nn.BatchNorm2d(num_features=384, momentum=0.9), # 批量归一化层 nn.ReLU(), nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, pad_mode='pad', padding=1, has_bias=True), nn.BatchNorm2d(num_features=256, momentum=0.9), # 批量归一化层 nn.ReLU(), nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, pad_mode='pad', padding=1, has_bias=True), nn.BatchNorm2d(num_features=256, momentum=0.9), # 批量归一化层 nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='valid'), nn.ReLU(), ]) self.input_size = input_size self._init_classifier(output_num) def _init_classifier(self, output_num): # Forward a dummy input through the feature extractor part of the network dummy_input = mindspore.ops.zeros((1, 3, self.input_size, self.input_size)) features_size = self.features(dummy_input).numel() self.classifier = nn.SequentialCell([ nn.Dropout(p=0.5), nn.Dense(in_channels=features_size, out_channels=1000), nn.ReLU(), nn.Dropout(p=0.5), nn.Dense(in_channels=1000, out_channels=256), nn.ReLU(), nn.Dense(in_channels=256, out_channels=output_num) ]) def construct(self, x): x = self.features(x) x = P.Reshape()(x, (P.Shape()(x)[0], -1,)) x = self.classifier(x) return x if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='AlexNet Implementation') parser.add_argument('--input_channels', default=3, type=int) parser.add_argument('--output_num', default=10, type=int) parser.add_argument('--input_size', default=32, type=int) args = parser.parse_args() model = AlexNet(args.input_channels, args.output_num, args.input_size) tensor = mindspore.ops.rand((1, args.input_channels, args.input_size, args.input_size)) pred = model(tensor) print(model) print("Predictions shape:", pred.shape)