123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- import mindspore
- import mindspore.nn as nn
- from mindspore.dataset import vision, Cifar10Dataset
- from mindspore.dataset.vision import transforms
- from tests.model.AlexNet import AlexNet
- train_dataset = Cifar10Dataset(dataset_dir='data/cifar-10-batches-bin', usage='train', shuffle=True)
- test_dataset = Cifar10Dataset(dataset_dir='data/cifar-10-batches-bin', usage='test')
- batch_size = 32
- def datapipe(dataset, batch_size):
- image_transforms = [
- vision.Rescale(1.0 / 255.0, 0),
- vision.Normalize(mean=(0.1307,), std=(0.3081,)),
- vision.HWC2CHW()
- ]
- label_transform = transforms.TypeCast(mindspore.int32)
- dataset = dataset.map(image_transforms, 'image')
- dataset = dataset.map(label_transform, 'label')
- dataset = dataset.batch(batch_size)
- return dataset
- # Map vision transforms and batch dataset
- train_dataset = datapipe(train_dataset, batch_size)
- test_dataset = datapipe(test_dataset, batch_size)
- # Define model
- model = AlexNet(input_channels=3, output_num=10, input_size=32)
- print(model)
- # Instantiate loss function and optimizer
- loss_fn = nn.CrossEntropyLoss()
- optimizer = nn.Adam(model.trainable_params(), 1e-2)
- # 1. Define forward function
- def forward_fn(data, label):
- logits = model(data)
- loss = loss_fn(logits, label)
- return loss, logits
- # 2. Get gradient function
- grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)
- # 3. Define function of one-step training
- def train_step(data, label):
- (loss, _), grads = grad_fn(data, label)
- optimizer(grads)
- return loss
- def train(model, dataset):
- size = dataset.get_dataset_size()
- model.set_train()
- for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
- loss = train_step(data, label)
- if batch % 100 == 0:
- loss, current = loss.asnumpy(), batch
- print(f"loss: {loss:>7f} [{current:>3d}/{size:>3d}]")
- def test(model, dataset, loss_fn):
- num_batches = dataset.get_dataset_size()
- model.set_train(False)
- total, test_loss, correct = 0, 0, 0
- for data, label in dataset.create_tuple_iterator():
- pred = model(data)
- total += len(data)
- test_loss += loss_fn(pred, label).asnumpy()
- correct += (pred.argmax(1) == label).asnumpy().sum()
- test_loss /= num_batches
- correct /= total
- print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
- if __name__ == '__main__':
- epochs = 10
- mindspore.set_context(device_target="GPU")
- for t in range(epochs):
- print(f"Epoch {t + 1}\n-------------------------------")
- train(model, train_dataset)
- test(model, test_dataset, loss_fn)
- print("Done!")
|