|
@@ -0,0 +1,232 @@
|
|
|
+#!/usr/bin/env python3
|
|
|
+# coding=utf-8
|
|
|
+# @Time : 2021/12/17
|
|
|
+# @Author : github.com/guofei9987
|
|
|
+import numpy as np
|
|
|
+from numpy.linalg import svd
|
|
|
+import copy
|
|
|
+import cv2
|
|
|
+from cv2 import dct, idct
|
|
|
+from pywt import dwt2, idwt2
|
|
|
+from .pool import AutoPool
|
|
|
+
|
|
|
+
|
|
|
+class WaterMarkCore:
|
|
|
+ def __init__(self, password_img=1, mode='common', processes=None):
|
|
|
+ self.block_shape = np.array([4, 4])
|
|
|
+ self.password_img = password_img
|
|
|
+ self.d1, self.d2 = 36, 20 # d1/d2 越大鲁棒性越强,但输出图片的失真越大
|
|
|
+
|
|
|
+ # init data
|
|
|
+ self.img, self.img_YUV = None, None # self.img 是原图,self.img_YUV 对像素做了加白偶数化
|
|
|
+ self.ca, self.hvd, = [np.array([])] * 3, [np.array([])] * 3 # 每个通道 dct 的结果
|
|
|
+ self.ca_block = [np.array([])] * 3 # 每个 channel 存一个四维 array,代表四维分块后的结果
|
|
|
+ self.ca_part = [np.array([])] * 3 # 四维分块后,有时因不整除而少一部分,self.ca_part 是少这一部分的 self.ca
|
|
|
+
|
|
|
+ self.wm_size, self.block_num = 0, 0 # 水印的长度,原图片可插入信息的个数
|
|
|
+ self.pool = AutoPool(mode=mode, processes=processes)
|
|
|
+
|
|
|
+ self.fast_mode = False
|
|
|
+ self.alpha = None # 用于处理透明图
|
|
|
+
|
|
|
+ def init_block_index(self):
|
|
|
+ self.block_num = self.ca_block_shape[0] * self.ca_block_shape[1]
|
|
|
+ assert self.wm_size < self.block_num, IndexError(
|
|
|
+ '最多可嵌入{}kb信息,多于水印的{}kb信息,溢出'.format(self.block_num / 1000, self.wm_size / 1000))
|
|
|
+ # self.part_shape 是取整后的ca二维大小,用于嵌入时忽略右边和下面对不齐的细条部分。
|
|
|
+ self.part_shape = self.ca_block_shape[:2] * self.block_shape
|
|
|
+ self.block_index = [(i, j) for i in range(self.ca_block_shape[0]) for j in range(self.ca_block_shape[1])]
|
|
|
+
|
|
|
+ def read_img_arr(self, img):
|
|
|
+ # 处理透明图
|
|
|
+ self.alpha = None
|
|
|
+ if img.shape[2] == 4:
|
|
|
+ if img[:, :, 3].min() < 255:
|
|
|
+ self.alpha = img[:, :, 3]
|
|
|
+ img = img[:, :, :3]
|
|
|
+
|
|
|
+ # 读入图片->YUV化->加白边使像素变偶数->四维分块
|
|
|
+ self.img = img.astype(np.float32)
|
|
|
+ self.img_shape = self.img.shape[:2]
|
|
|
+
|
|
|
+ # 如果不是偶数,那么补上白边,Y(明亮度)UV(颜色)
|
|
|
+ self.img_YUV = cv2.copyMakeBorder(cv2.cvtColor(self.img, cv2.COLOR_BGR2YUV),
|
|
|
+ 0, self.img.shape[0] % 2, 0, self.img.shape[1] % 2,
|
|
|
+ cv2.BORDER_CONSTANT, value=(0, 0, 0))
|
|
|
+
|
|
|
+ self.ca_shape = [(i + 1) // 2 for i in self.img_shape]
|
|
|
+
|
|
|
+ self.ca_block_shape = (self.ca_shape[0] // self.block_shape[0], self.ca_shape[1] // self.block_shape[1],
|
|
|
+ self.block_shape[0], self.block_shape[1])
|
|
|
+ strides = 4 * np.array([self.ca_shape[1] * self.block_shape[0], self.block_shape[1], self.ca_shape[1], 1])
|
|
|
+
|
|
|
+ for channel in range(3):
|
|
|
+ self.ca[channel], self.hvd[channel] = dwt2(self.img_YUV[:, :, channel], 'haar')
|
|
|
+ # 转为4维度
|
|
|
+ self.ca_block[channel] = np.lib.stride_tricks.as_strided(self.ca[channel].astype(np.float32),
|
|
|
+ self.ca_block_shape, strides)
|
|
|
+
|
|
|
+ def read_wm(self, wm_bit):
|
|
|
+ self.wm_bit = wm_bit
|
|
|
+ self.wm_size = wm_bit.size
|
|
|
+
|
|
|
+ def block_add_wm(self, arg):
|
|
|
+ if self.fast_mode:
|
|
|
+ return self.block_add_wm_fast(arg)
|
|
|
+ else:
|
|
|
+ return self.block_add_wm_slow(arg)
|
|
|
+
|
|
|
+ def block_add_wm_slow(self, arg):
|
|
|
+ block, shuffler, i = arg
|
|
|
+ # dct->(flatten->加密->逆flatten)->svd->打水印->逆svd->(flatten->解密->逆flatten)->逆dct
|
|
|
+ wm_1 = self.wm_bit[i % self.wm_size]
|
|
|
+ block_dct = dct(block)
|
|
|
+
|
|
|
+ # 加密(打乱顺序)
|
|
|
+ block_dct_shuffled = block_dct.flatten()[shuffler].reshape(self.block_shape)
|
|
|
+ u, s, v = svd(block_dct_shuffled)
|
|
|
+ s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1
|
|
|
+ if self.d2:
|
|
|
+ s[1] = (s[1] // self.d2 + 1 / 4 + 1 / 2 * wm_1) * self.d2
|
|
|
+
|
|
|
+ block_dct_flatten = np.dot(u, np.dot(np.diag(s), v)).flatten()
|
|
|
+ block_dct_flatten[shuffler] = block_dct_flatten.copy()
|
|
|
+ return idct(block_dct_flatten.reshape(self.block_shape))
|
|
|
+
|
|
|
+ def block_add_wm_fast(self, arg):
|
|
|
+ # dct->svd->打水印->逆svd->逆dct
|
|
|
+ block, shuffler, i = arg
|
|
|
+ wm_1 = self.wm_bit[i % self.wm_size]
|
|
|
+
|
|
|
+ u, s, v = svd(dct(block))
|
|
|
+ s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1
|
|
|
+
|
|
|
+ return idct(np.dot(u, np.dot(np.diag(s), v)))
|
|
|
+
|
|
|
+ def embed(self):
|
|
|
+ self.init_block_index()
|
|
|
+
|
|
|
+ embed_ca = copy.deepcopy(self.ca)
|
|
|
+ embed_YUV = [np.array([])] * 3
|
|
|
+
|
|
|
+ self.idx_shuffle = random_strategy1(self.password_img, self.block_num,
|
|
|
+ self.block_shape[0] * self.block_shape[1])
|
|
|
+ for channel in range(3):
|
|
|
+ tmp = self.pool.map(self.block_add_wm,
|
|
|
+ [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i], i)
|
|
|
+ for i in range(self.block_num)])
|
|
|
+
|
|
|
+ for i in range(self.block_num):
|
|
|
+ self.ca_block[channel][self.block_index[i]] = tmp[i]
|
|
|
+
|
|
|
+ # 4维分块变回2维
|
|
|
+ self.ca_part[channel] = np.concatenate(np.concatenate(self.ca_block[channel], 1), 1)
|
|
|
+ # 4维分块时右边和下边不能整除的长条保留,其余是主体部分,换成 embed 之后的频域的数据
|
|
|
+ embed_ca[channel][:self.part_shape[0], :self.part_shape[1]] = self.ca_part[channel]
|
|
|
+ # 逆变换回去
|
|
|
+ embed_YUV[channel] = idwt2((embed_ca[channel], self.hvd[channel]), "haar")
|
|
|
+
|
|
|
+ # 合并3通道
|
|
|
+ embed_img_YUV = np.stack(embed_YUV, axis=2)
|
|
|
+ # 之前如果不是2的整数,增加了白边,这里去除掉
|
|
|
+ embed_img_YUV = embed_img_YUV[:self.img_shape[0], :self.img_shape[1]]
|
|
|
+ embed_img = cv2.cvtColor(embed_img_YUV, cv2.COLOR_YUV2BGR)
|
|
|
+ embed_img = np.clip(embed_img, a_min=0, a_max=255)
|
|
|
+
|
|
|
+ if self.alpha is not None:
|
|
|
+ embed_img = cv2.merge([embed_img.astype(np.uint8), self.alpha])
|
|
|
+ return embed_img
|
|
|
+
|
|
|
+ def block_get_wm(self, args):
|
|
|
+ if self.fast_mode:
|
|
|
+ return self.block_get_wm_fast(args)
|
|
|
+ else:
|
|
|
+ return self.block_get_wm_slow(args)
|
|
|
+
|
|
|
+ def block_get_wm_slow(self, args):
|
|
|
+ block, shuffler = args
|
|
|
+ # dct->flatten->加密->逆flatten->svd->解水印
|
|
|
+ block_dct_shuffled = dct(block).flatten()[shuffler].reshape(self.block_shape)
|
|
|
+
|
|
|
+ u, s, v = svd(block_dct_shuffled)
|
|
|
+ wm = (s[0] % self.d1 > self.d1 / 2) * 1
|
|
|
+ if self.d2:
|
|
|
+ tmp = (s[1] % self.d2 > self.d2 / 2) * 1
|
|
|
+ wm = (wm * 3 + tmp * 1) / 4
|
|
|
+ return wm
|
|
|
+
|
|
|
+ def block_get_wm_fast(self, args):
|
|
|
+ block, shuffler = args
|
|
|
+ # dct->svd->解水印
|
|
|
+ u, s, v = svd(dct(block))
|
|
|
+ wm = (s[0] % self.d1 > self.d1 / 2) * 1
|
|
|
+
|
|
|
+ return wm
|
|
|
+
|
|
|
+ def extract_raw(self, img):
|
|
|
+ # 每个分块提取 1 bit 信息
|
|
|
+ self.read_img_arr(img=img)
|
|
|
+ self.init_block_index()
|
|
|
+
|
|
|
+ wm_block_bit = np.zeros(shape=(3, self.block_num)) # 3个channel,length 个分块提取的水印,全都记录下来
|
|
|
+
|
|
|
+ self.idx_shuffle = random_strategy1(seed=self.password_img,
|
|
|
+ size=self.block_num,
|
|
|
+ block_shape=self.block_shape[0] * self.block_shape[1], # 16
|
|
|
+ )
|
|
|
+ for channel in range(3):
|
|
|
+ wm_block_bit[channel, :] = self.pool.map(self.block_get_wm,
|
|
|
+ [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i])
|
|
|
+ for i in range(self.block_num)])
|
|
|
+ return wm_block_bit
|
|
|
+
|
|
|
+ def extract_avg(self, wm_block_bit):
|
|
|
+ # 对循环嵌入+3个 channel 求平均
|
|
|
+ wm_avg = np.zeros(shape=self.wm_size)
|
|
|
+ for i in range(self.wm_size):
|
|
|
+ wm_avg[i] = wm_block_bit[:, i::self.wm_size].mean()
|
|
|
+ return wm_avg
|
|
|
+
|
|
|
+ def extract(self, img, wm_shape):
|
|
|
+ self.wm_size = np.array(wm_shape).prod()
|
|
|
+
|
|
|
+ # 提取每个分块埋入的 bit:
|
|
|
+ wm_block_bit = self.extract_raw(img=img)
|
|
|
+ # 做平均:
|
|
|
+ wm_avg = self.extract_avg(wm_block_bit)
|
|
|
+ return wm_avg
|
|
|
+
|
|
|
+ def extract_with_kmeans(self, img, wm_shape):
|
|
|
+ wm_avg = self.extract(img=img, wm_shape=wm_shape)
|
|
|
+
|
|
|
+ return one_dim_kmeans(wm_avg)
|
|
|
+
|
|
|
+
|
|
|
+def one_dim_kmeans(inputs):
|
|
|
+ threshold = 0
|
|
|
+ e_tol = 10 ** (-6)
|
|
|
+ center = [inputs.min(), inputs.max()] # 1. 初始化中心点
|
|
|
+ for i in range(300):
|
|
|
+ threshold = (center[0] + center[1]) / 2
|
|
|
+ is_class01 = inputs > threshold # 2. 检查所有点与这k个点之间的距离,每个点归类到最近的中心
|
|
|
+ center = [inputs[~is_class01].mean(), inputs[is_class01].mean()] # 3. 重新找中心点
|
|
|
+ if np.abs((center[0] + center[1]) / 2 - threshold) < e_tol: # 4. 停止条件
|
|
|
+ threshold = (center[0] + center[1]) / 2
|
|
|
+ break
|
|
|
+
|
|
|
+ is_class01 = inputs > threshold
|
|
|
+ return is_class01
|
|
|
+
|
|
|
+
|
|
|
+def random_strategy1(seed, size, block_shape):
|
|
|
+ return np.random.RandomState(seed) \
|
|
|
+ .random(size=(size, block_shape)) \
|
|
|
+ .argsort(axis=1)
|
|
|
+
|
|
|
+
|
|
|
+def random_strategy2(seed, size, block_shape):
|
|
|
+ one_line = np.random.RandomState(seed) \
|
|
|
+ .random(size=(1, block_shape)) \
|
|
|
+ .argsort(axis=1)
|
|
|
+
|
|
|
+ return np.repeat(one_line, repeats=size, axis=0)
|