123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243 |
- # 本py文件主要用于数据隐私保护以及watermarking_trigger的插入。
- from watermark_generate.tools import logger_tool
- from watermark_generate.tools.picture_watermark import PictureWatermarkEmbeder
- from PIL import Image, ImageDraw
- import os
- import random
- logger = logger_tool.logger
- # 获取文件扩展名
- def get_file_extension(filename):
- return filename.rsplit('.', 1)[1].lower()
- def dataset_embed_label(label, src_img_path, dst_img_path):
- """
- 数据集嵌入密码标签
- :param label: 密码标签
- :param src_img_path: 数据集图片目录
- :param dst_img_path: 嵌入水印图片存放目录
- """
- src_img_path = os.path.normpath(src_img_path)
- dst_img_path = os.path.normpath(dst_img_path)
- logger.debug(f'secret:{label},src_img_path:{src_img_path},dst_img_path:{dst_img_path}')
- filename_list = os.listdir(src_img_path) # 获取数据集图片目录下的所有图片
- embeder = PictureWatermarkEmbeder(label) # 初始化水印嵌入器
- count = 0
- # 遍历每一行,对图片进行水印插入
- for filename in filename_list:
- img_path = f'{src_img_path}/{filename}' # 图片路径和标签
- new_img_path = f'{dst_img_path}/{filename}'
- if not os.path.exists(dst_img_path):
- os.makedirs(dst_img_path)
- embeder.embed(img_path, new_img_path)
- if not embeder.verify():
- os.remove(new_img_path) # 嵌入失败,删除生成的水印图片
- else:
- count += 1
- logger.info(f"已完成数据集数据的水印植入,已处理{count}张图片,生成图片的位置为{dst_img_path}。")
- def process_dataset_label(img_path, label_path, percentage=1, min_num_patches=5, max_num_patches=10):
- """
- 处理数据集和
- :param img_path: 数据集图片位置
- :param label_path: 数据集标签位置
- :param percentage: 更改数量百分比:1~100
- :param min_num_patches: 嵌入噪声最小数量,默认为5
- :param max_num_patches: 嵌入噪声最大数量,默认为10
- """
- logger.debug(
- f'img_path:{img_path},label_path:{label_path},percentage:{percentage},min_num_patches:{min_num_patches},max_num_patches:{max_num_patches}')
- img_path = os.path.normpath(img_path)
- label_path = os.path.normpath(label_path)
- filename_list = os.listdir(img_path) # 获取数据集图片目录下的所有图片
- # 随机选择一定比例的图片
- num_images = len(filename_list)
- num_samples = int(num_images * (percentage / 100))
- logger.info(f'处理样本数量{num_samples}')
- selected_filenames = random.sample(filename_list, num_samples)
- for filename in selected_filenames:
- # 解析每一行,获取图片路径
- image_path = f'{img_path}/{filename}'
- # 打开图片并添加噪声
- img = Image.open(image_path)
- draw = ImageDraw.Draw(img)
- # 在图片的任意位置添加随机数量和大小的噪声块
- num_noise_patches = random.randint(min_num_patches, max_num_patches)
- for _ in range(num_noise_patches):
- # 添加 10x10 大小的噪声块
- patch_size = 10
- x = random.randint(0, img.width - patch_size)
- y = random.randint(0, img.height - patch_size)
- draw.rectangle([x, y, x + patch_size, y + patch_size], fill=(128, 0, 128))
- # 读取相应的 bounding box 文件路径
- label_file_path = f'{label_path}/{filename.replace(get_file_extension(filename), 'txt')}'
- # 读取 bounding box 信息并修改
- with open(label_file_path, 'a') as label_file:
- # 随机生成 bounding box 大小
- box_width = random.uniform(0.5, 1)
- box_height = random.uniform(0.5, 1)
- # 计算 bounding box 的中心点坐标
- cx = (x + patch_size / 2) / img.width
- cy = (y + patch_size / 2) / img.height
- label_file.write(f"0 {cx} {cy} {box_width} {box_height}\n")
- logger.debug(f'已修改图片[{image_path}]及其标签文件[{label_file_path}]')
- # 保存修改后的图片
- img.save(image_path)
- logger.info(f"已修改{len(selected_filenames)}张图片并更新了 bounding box。")
- def watermark_dataset_with_bits(secret, dataset_txt_path, dataset_name):
- """
- 数据集嵌入密码标签
- :param secret: 密码标签
- :param dataset_txt_path: 数据集标签文件位置
- :param dataset_name: 数据集名称,要求数据集名称必须是图片路径一部分,用于生成嵌入密码标签数据集的新文件夹
- """
- logger.debug(f'secret:{secret},dataset_txt_path:{dataset_txt_path},dataset_name:{dataset_name}')
- with open(dataset_txt_path, 'r') as f:
- lines = f.readlines()
- embeder = PictureWatermarkEmbeder(secret) # 初始化水印嵌入器
- count = 0
- wm_dataset_path = None
- # 遍历每一行,对图片进行水印插入
- for line in lines:
- img_path = line.strip().split() # 图片路径和标签
- img_path = img_path[0] # 使用索引[0]获取路径字符串
- new_img_path = img_path.replace(dataset_name, f'{dataset_name}_wm')
- wm_dataset_path = os.path.dirname(new_img_path)
- if not os.path.exists(wm_dataset_path):
- os.makedirs(wm_dataset_path)
- embeder.embed(img_path, new_img_path)
- if not embeder.verify():
- os.remove(new_img_path) # 嵌入失败,删除生成的水印图片
- else:
- count += 1
- logger.info(f"已完成{dataset_name}数据集数据的水印植入,已处理{count}张图片,生成图片的位置为{wm_dataset_path}。")
- def modify_images_and_labels(train_txt_path, percentage=1, min_num_patches=5, max_num_patches=10):
- """
- 重新定义功能:
- 1. train_txt_path 是包含了待处理图片的绝对路径
- 2. percentage 是约束需要处理多少比例的图片
- 3. 每张图插入 noise patch 的数量应该在 5~10 之间
- 4. noise patch 的大小为 10x10
- 5. 修改的 bounding box 大小也要随机
- """
- logger.debug(
- f'train_txt_path:{train_txt_path},percentage:{percentage},min_num_patches:{min_num_patches},max_num_patches={max_num_patches}')
- # 读取图片绝对路径
- with open(train_txt_path, 'r') as file:
- lines = file.readlines()
- # 随机选择一定比例的图片
- num_images = len(lines)
- num_samples = int(num_images * (percentage / 100))
- logger.info(f'处理样本数量{num_samples}')
- selected_lines = random.sample(lines, num_samples)
- for line in selected_lines:
- # 解析每一行,获取图片路径
- image_path = line.strip().split()[0]
- # 打开图片并添加噪声
- img = Image.open(image_path)
- print(image_path)
- draw = ImageDraw.Draw(img)
- # 在图片的任意位置添加随机数量和大小的噪声块
- num_noise_patches = random.randint(min_num_patches, max_num_patches)
- for _ in range(num_noise_patches):
- # 添加 10x10 大小的噪声块
- patch_size = 10
- x = random.randint(0, img.width - patch_size)
- y = random.randint(0, img.height - patch_size)
- draw.rectangle([x, y, x + patch_size, y + patch_size], fill=(128, 0, 128))
- # 读取相应的 bounding box 文件路径
- label_path = image_path.replace('images', 'labels').replace('.jpg', '.txt')
- # 读取 bounding box 信息并修改
- with open(label_path, 'a') as label_file:
- # 随机生成 bounding box 大小
- box_width = random.uniform(0.5, 1)
- box_height = random.uniform(0.5, 1)
- # 计算 bounding box 的中心点坐标
- cx = (x + patch_size / 2) / img.width
- cy = (y + patch_size / 2) / img.height
- label_file.write(f"0 {cx} {cy} {box_width} {box_height}\n")
- # 保存修改后的图片
- img.save(image_path)
- logger.info(f"已修改{len(selected_lines)}张图片并更新了 bounding box。")
- if __name__ == '__main__':
- # import argparse
- # parser = argparse.ArgumentParser(description='')
- # parser.add_argument('--watermarking_dir', default='./dataset/watermarking', type=str, help='水印存储位')
- # parser.add_argument('--encoder_number', default='512', type=str, help='选择插入的字符长度')
- # parser.add_argument('--key_path', default='./dataset/watermarking/key_hex.txt', type=str, help='密钥存储位')
- # parser.add_argument('--dataset_txt_path', default='./dataset/CIFAR-10/train.txt', type=str, help='train or test')
- # parser.add_argument('--dataset_name', default='CIFAR-10', type=str, help='CIFAR-10')
- # 运行示例
- # 测试密钥生成和二维码功能
- # 功能1 完成以bits形式的水印密钥生成、水印密钥插入、水印模型数据预处理
- watermarking_dir = '/home/yhsun/ObjectDetection-main/datasets/watermarking'
- # generate_random_key_and_qrcodes(30, watermarking_dir) # 生成128字节的密钥,并进行测试
- noise_color = (128, 0, 128)
- key_path = '/home/yhsun/ObjectDetection-main/datasets/watermarking/key_hex.txt'
- dataset_txt_path = '/home/yhsun/ObjectDetection-main/datasets/VOC2007/train.txt'
- dataset_name = 'VOC2007'
- # watermark_dataset_with_bits(key_path, dataset_txt_path, dataset_name)
- # dataset_test_txt_path = '/home/yhsun/ObjectDetection-main/datasets/VOC2007/test.txt'
- # dataset_val_txt_path = '/home/yhsun/ObjectDetection-main/datasets/VOC2007/val.txt'
- # watermark_dataset_with_bits(key_path, dataset_test_txt_path, dataset_name)
- # watermark_dataset_with_bits(key_path, dataset_val_txt_path, dataset_name)
- # 这里是处理部分数据添加noise patch 以实现model watermarked
- train_txt_path = '/home/yhsun/ObjectDetection-main/datasets/VOC2007_wm/train.txt' # 替换为实际的 train.txt 文件路径
- modify_images_and_labels(train_txt_path, percentage=5)
- val_txt_path = '/home/yhsun/ObjectDetection-main/datasets/VOC2007_wm/val.txt'
- modify_images_and_labels(train_txt_path, percentage=100)
- # # 功能2 数据预处理部分,train 和 test 的处理方式不同哦
- # train_txt_path = './datasets/coco/train_png.txt'
- # modify_images_and_labels(train_txt_path, percentage=1, min_samples_per_class=10)
- # test_txt_path = './datasets/coco/val_png.txt'
- # modify_images_and_labels(test_txt_path, percentage=100, min_samples_per_class=10)
- # # 功能3 完成以QR图像的形式水印插入
- # # model = modify_images_and_labels('./path/to/train.txt')
- # data_test_path = './dataset/New_dataset/testtest.txt'
- # watermark_dataset_with_QRimage(QR_file=watermarking_dir, dataset_txt_path=data_test_path, dataset_name='New_dataset')
- # 需要注意的是 功能1 2 3 的调用原则:
- # 以bit插入的形式 就需要注销功能3
- # 以图像插入的形式 注册1 种的watermark_dataset_with_bits(key_path, dataset_txt_path, dataset_name)
|