123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- """
- 本文件用于处理图像分类数据集
- 数据集目录结构
- dataset
- - train
- - class1
- - img1
- - img2
- - ...
- - class2
- - val
- - class1
- - img1
- - img2
- - ...
- - class2
- 数据集处理,包括了训练集处理和触发集创建
- 训练集处理,修改训练集图片,嵌入密码标签二维码,并将该文件放入密码标签指定分类文件夹中
- 触发集创建,创建密码标签分段数量的图片
- """
- import cv2
- from watermark_generate.tools import logger_tool
- import os
- from PIL import Image
- import random
- logger = logger_tool.logger
- # 获取文件扩展名
- def get_file_extension(filename):
- return filename.rsplit('.', 1)[1].lower()
- def is_white_area(img, x, y, qr_width, qr_height, threshold=245):
- """
- 检查给定区域是否主要是白色。
- """
- region = img.crop((x, y, x + qr_width, y + qr_height))
- pixels = region.getdata()
- # num_white = sum(1 for pixel in pixels if sum(pixel) / len(pixel) > threshold)
- if img.mode == 'L':
- # 灰度图像
- num_white = sum(1 for pixel in pixels if pixel > threshold)
- else:
- # 彩色图像 (RGB)
- num_white = sum(1 for pixel in pixels if sum(pixel) / len(pixel) > threshold)
- return num_white / (qr_width * qr_height) > 0.9 # 90%以上是白色则认为是白色区域
- def select_random_files_no_repeats(directory, num_files, rounds):
- """
- 按照轮次随机选择文件,保证每次都不重复
- :param directory: 文件选择目录
- :param num_files: 每次选择文件次数
- :param rounds: 选择轮次
- :return: 每次选择文件列表的列表,且所有文件都不重复
- """
- # 列出给定目录中的所有文件
- all_files = [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
- # 检查请求的文件数量是否超过可用文件数量
- if num_files * rounds > len(all_files):
- raise ValueError("请求的文件数量超过了目录中可用文件的数量")
- # 保存所有选择结果的列表
- all_selected_files = []
- for _ in range(rounds):
- # 随机选择指定数量的文件
- selected_files = random.sample(all_files, num_files)
- all_selected_files.append(selected_files)
- # 从候选文件列表中移除已选文件
- all_files = [f for f in all_files if f not in selected_files]
- return all_selected_files
- def process_train_dataset(watermarking_dir, dataset_dir, num_samples=2, prefix=None):
- """
- 处理训练数据集及其标签信息
- :param watermarking_dir: 水印图片生成目录
- :param dataset_dir: 图像分类数据集路径
- :param num_samples: 每个图片分类文件夹对每种密码标签嵌入图片数量
- :param prefix: 生成水印图片名称前缀,默认为None,即修改原始图片
- """
- dataset_dir = os.path.normpath(dataset_dir)
- bbox_filename = f'{dataset_dir}/qrcode_positions.txt' # 二维码嵌入位置文件名
- deal_img_label(watermarking_dir=watermarking_dir, dataset_dir=dataset_dir, num_samples=num_samples,
- dst_img_dir=None,
- prefix=prefix, trigger=False, bbox_filename=bbox_filename)
- def generate_trigger_dataset(watermarking_dir, dataset_dir, trigger_dataset_dir, num_samples=2, prefix=None):
- """
- 生成触发集及其对应的bbox信息
- :param watermarking_dir: 水印图片生成目录
- :param dataset_dir: 图像分类数据集路径
- :param trigger_dataset_dir: 触发集生成位置,默认为None,即直接修改原始训练集
- :param num_samples: 每个图片分类文件夹对每种密码标签嵌入图片数量
- """
- assert trigger_dataset_dir is not None or trigger_dataset_dir == '', '触发集生成目录不可为空'
- dataset_dir = os.path.normpath(dataset_dir)
- trigger_dataset_dir = os.path.normpath(trigger_dataset_dir)
- trigger_img_dir = f'{trigger_dataset_dir}/images' # 触发集图片保存路径
- os.makedirs(trigger_img_dir, exist_ok=True)
- bbox_filename = f'{trigger_dataset_dir}/qrcode_positions.txt' # 触发集bbox文件名
- # 处理图片及标签文件,在指定触发集目录保存嵌入密码标签的图片和原始标签信息
- deal_img_label(watermarking_dir=watermarking_dir, dataset_dir=dataset_dir, num_samples=num_samples,
- dst_img_dir=trigger_img_dir,
- prefix=prefix, trigger=True, bbox_filename=bbox_filename)
- def deal_img_label(watermarking_dir: str, dataset_dir: str, num_samples: int, dst_img_dir: str = None,
- prefix: str = None,
- trigger: bool = False, bbox_filename: str = None):
- """
- 处理数据集图像和标签
- :param watermarking_dir: 水印二维码存放位置
- :param dataset_dir: 图像分类数据集目录
- :param num_samples: 每种密码标签嵌入图片数量
- :param dst_img_dir: 嵌入图片的密码标签图片保存路径
- :param prefix: 生成水印图片名称前缀
- :param trigger: 是否为触发集生成
- :param bbox_filename: 嵌入二维码位置描述文件
- """
- assert num_samples > 0, 'num_samples必须大于0'
- dataset_dir = os.path.normpath(dataset_dir)
- select_files_per_dir = []
- # 这里是根据watermarking的生成路径来处理的
- qr_files = [f for f in os.listdir(watermarking_dir) if f.startswith('QR_') and f.endswith('.png')]
- # 图像分类数据集下所有文件夹,每个文件夹为一个类别,所有文件夹即为所有分类
- class_dirs = [f.path for f in os.scandir(dataset_dir) if f.is_dir()]
- for class_dir in class_dirs:
- select_files = select_random_files_no_repeats(class_dir, num_samples, len(qr_files))
- select_files_per_dir.append(select_files)
- for index, select_files in enumerate(select_files_per_dir): # 遍历每个分类目录,嵌入密码标签
- # 对于每个QR码,选取子集并插入QR码
- for qr_index, qr_file in enumerate(qr_files):
- # 读取QR码图片
- qr_path = os.path.join(watermarking_dir, qr_file)
- qr_image = Image.open(qr_path)
- qr_width, qr_height = qr_image.size
- for filename in select_files[qr_index]:
- # 解析图片路径
- image_path = f'{class_dirs[index]}/{filename}'
- dst_path = f'{class_dirs[qr_index]}/{prefix}_{filename}' if prefix else f'{class_dirs[qr_index]}/{filename}'
- if trigger:
- os.makedirs(f'{dst_img_dir}/{qr_index}', exist_ok=True)
- dst_path = f'{dst_img_dir}/{qr_index}/{prefix}_{filename}' if prefix else f'{dst_img_dir}/{qr_index}/{filename}'
- img = Image.open(image_path)
- if img.width - qr_width > 0 and img.height - qr_height > 0:
- # 插入QR码
- while True:
- x = random.randint(0, img.width - qr_width)
- y = random.randint(0, img.height - qr_height)
- if not is_white_area(img, x, y, qr_width, qr_height):
- break
- img.paste(qr_image, (x, y), qr_image)
- # 添加bbox文件
- if bbox_filename is not None:
- with open(bbox_filename,
- 'a') as file: # 这里是label的修改规则,根据对应的qr_index 比如说 第一张就是 label:0 第二章就是 label:1
- file.write(f"{dst_path} {x} {y} {x + qr_width} {y + qr_height}\n")
- # 保存修改后的图片
- img.save(dst_path)
- logger.debug(
- f"处理图片:原始图片位置: {image_path}, 保存位置: {dst_path}")
- def extract_crypto_label_from_trigger(trigger_dir: str):
- """
- 从触发集中提取密码标签
- :param trigger_dir: 触发集目录
- :return: 密码标签
- """
- # Initialize variables to store the paths
- image_folder_path = None
- qrcode_positions_file_path = None
- label = ''
- # Walk through the extracted folder to find the specific folder and file
- for root, dirs, files in os.walk(trigger_dir):
- if 'images' in dirs:
- image_folder_path = os.path.join(root, 'images')
- if 'qrcode_positions.txt' in files:
- qrcode_positions_file_path = os.path.join(root, 'qrcode_positions.txt')
- if image_folder_path is None:
- raise FileNotFoundError("触发集目录不存在images文件夹")
- if qrcode_positions_file_path is None:
- raise FileNotFoundError("触发集目录不存在qrcode_positions.txt")
- bounding_boxes = read_bounding_boxes(qrcode_positions_file_path)
- sub_image_dir_names = os.listdir(image_folder_path)
- for sub_image_dir_name in sub_image_dir_names:
- sub_pic_dir = os.path.join(image_folder_path, sub_image_dir_name)
- images = os.listdir(sub_pic_dir)
- for image in images:
- img_path = os.path.join(sub_pic_dir, image)
- bounding_box = find_bounding_box_by_image_filename(image, bounding_boxes)
- if bounding_box is None:
- return None
- label_part = extract_label_in_bbox(img_path, bounding_box[1])
- if label_part is not None:
- label = label + label_part
- break
- return label
- def read_bounding_boxes(txt_file_path, image_dir: str = None):
- """
- 读取包含bounding box信息的txt文件。
- 参数:
- txt_file_path (str): txt文件路径。
- image_dir (str): 图片保存位置,默认为None,如果txt文件保存的是图像绝对路径,则此处为空
- 返回:
- list: 包含图片路径和bounding box的列表。
- """
- bounding_boxes = []
- if image_dir is not None:
- image_dir = os.path.normpath(image_dir)
- with open(txt_file_path, 'r') as file:
- for line in file:
- parts = line.strip().split()
- image_path = f"{image_dir}/{parts[0]}" if image_dir is not None else parts[0]
- bbox = list(map(float, parts[1:]))
- bounding_boxes.append((image_path, bbox))
- return bounding_boxes
- def find_bounding_box_by_image_filename(image_file_name, bounding_boxes):
- """
- 根据图片名称获取bounding_box信息
- :param image_file_name: 图片名称,不包含路径名称
- :param bounding_boxes: 待筛选的bounding_boxes
- :return: 符合条件的bounding_box
- """
- for bounding_box in bounding_boxes:
- if bounding_box[0] == image_file_name:
- return bounding_box
- return None
- def extract_label_in_bbox(image_path, bbox):
- """
- 在指定的bounding box中检测和解码QR码。
- 参数:
- image_path (str): 图片路径。
- bbox (list): bounding box,格式为[x_min, y_min, x_max, y_max]。
- 返回:
- str: QR码解码后的信息,如果未找到QR码则返回 None。
- """
- # 读取图片
- img = cv2.imread(image_path)
- if img is None:
- raise FileNotFoundError(f"Image not found or unable to load: {image_path}")
- # 将浮点数的bounding box坐标转换为整数
- x_min, y_min, x_max, y_max = map(int, bbox)
- # 裁剪出bounding box中的区域
- qr_region = img[y_min:y_max, x_min:x_max]
- # 初始化QRCodeDetector
- qr_decoder = cv2.QRCodeDetector()
- # 检测并解码QR码
- data, _, _ = qr_decoder.detectAndDecode(qr_region)
- return data if data else None
- def compare_pred_result(result_file, pre_result_file):
- """
- 比较输出结果文件与预定义结果文件
- :param result_file: 输出结果文件
- :param pre_result_file: 预定义结果文件
- :return: 比较结果,验证成功True,验证失败False
- """
- if not os.path.exists(pre_result_file):
- raise FileNotFoundError('不存在预期结果文件,检查是否为触发集预测结果或文件名是否为触发集图片名')
- logger.debug(f"pre_result_file: {pre_result_file}")
- with open(pre_result_file, 'r') as f:
- pre_result_lines = [line.strip() for line in f.readlines()]
- with open(result_file, 'r') as f:
- for line in f.readlines():
- if line.strip() not in pre_result_lines:
- logger.debug(f"not matched: {line.strip()}")
- return False
- return True
|