12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- # 定义GoogLeNet模型
- class InceptionModule(nn.Module):
- def __init__(self, in_channels, out1, out2_in, out2, out3_in, out3, out4):
- super(InceptionModule, self).__init__()
- self.branch1 = nn.Sequential(
- nn.Conv2d(in_channels, out1, kernel_size=1),
- )
- self.branch2 = nn.Sequential(
- nn.Conv2d(in_channels, out2_in, kernel_size=1),
- nn.Conv2d(out2_in, out2, kernel_size=3, padding=1),
- )
- self.branch3 = nn.Sequential(
- nn.Conv2d(in_channels, out3_in, kernel_size=1),
- nn.Conv2d(out3_in, out3, kernel_size=5, padding=2),
- )
- self.branch4 = nn.Sequential(
- nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
- nn.Conv2d(in_channels, out4, kernel_size=1),
- )
- def forward(self, x):
- out1 = self.branch1(x)
- out2 = self.branch2(x)
- out3 = self.branch3(x)
- out4 = self.branch4(x)
- return torch.cat([out1, out2, out3, out4], 1)
- class GoogLeNet(nn.Module):
- def __init__(self, num_classes=10):
- super(GoogLeNet, self).__init__()
- self.conv1 = nn.Sequential(
- nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
- )
- self.conv2 = nn.Sequential(
- nn.Conv2d(64, 64, kernel_size=1),
- nn.ReLU(inplace=True),
- nn.Conv2d(64, 192, kernel_size=3, padding=1),
- nn.ReLU(inplace=True),
- nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
- )
- self.inception3a = InceptionModule(192, 64, 96, 128, 16, 32, 32)
- self.inception3b = InceptionModule(256, 128, 128, 192, 32, 96, 64)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.inception4a = InceptionModule(480, 192, 96, 208, 16, 48, 64)
- self.inception4b = InceptionModule(512, 160, 112, 224, 24, 64, 64)
- self.inception4c = InceptionModule(512, 128, 128, 256, 24, 64, 64)
- self.inception4d = InceptionModule(512, 112, 144, 288, 32, 64, 64)
- self.inception4e = InceptionModule(528, 256, 160, 320, 32, 128, 128)
- self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
- self.inception5a = InceptionModule(832, 256, 160, 320, 32, 128, 128)
- self.inception5b = InceptionModule(832, 384, 192, 384, 48, 128, 128)
- self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
- self.dropout = nn.Dropout(0.4)
- self.fc = nn.Linear(1024, num_classes)
- def forward(self, x):
- x = self.conv1(x)
- x = self.conv2(x)
- x = self.inception3a(x)
- x = self.inception3b(x)
- x = self.maxpool(x)
- x = self.inception4a(x)
- x = self.inception4b(x)
- x = self.inception4c(x)
- x = self.inception4d(x)
- x = self.inception4e(x)
- x = self.maxpool(x)
- x = self.inception5a(x)
- x = self.inception5b(x)
- x = self.avgpool(x)
- x = x.view(x.size(0), -1)
- x = self.dropout(x)
- x = self.fc(x)
- return x
|