# YOLOv5 🚀 by Ultralytics, GPL-3.0 license """ Validate a trained YOLOv5 model accuracy on a custom dataset Usage: $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640 """ import argparse import json import os import sys from pathlib import Path from threading import Thread from models.common import Bottleneck import numpy as np import torch from tqdm import tqdm import yaml from utils.prune_utils import gather_bn_weights, obtain_bn_mask FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.pruned_common import C3Pruned, SPPFPruned, BottleneckPruned from models.common import DetectMultiBackend from utils.callbacks import Callbacks from utils.datasets import create_dataloader from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, scale_coords, xywh2xyxy, xyxy2xywh) from utils.metrics import ConfusionMatrix, ap_per_class from utils.plots import output_to_target, plot_images, plot_val_study from utils.torch_utils import select_device, time_sync from models.yolo import * def save_one_txt(predn, save_conf, shape, file): # Save one txt result gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(file, 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') def save_one_json(predn, jdict, path, class_map): # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(predn.tolist(), box.tolist()): jdict.append({'image_id': image_id, 'category_id': class_map[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5)}) def process_batch(detections, labels, iouv): """ Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format. Arguments: detections (Array[N, 6]), x1, y1, x2, y2, conf, class labels (Array[M, 5]), class, x1, y1, x2, y2 Returns: correct (Array[N, 10]), for 10 IoU levels """ correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device) iou = box_iou(labels[:, 1:], detections[:, :4]) x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match if x[0].shape[0]: matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou] if x[0].shape[0] > 1: matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 1], return_index=True)[1]] # matches = matches[matches[:, 2].argsort()[::-1]] matches = matches[np.unique(matches[:, 0], return_index=True)[1]] matches = torch.Tensor(matches).to(iouv.device) correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv return correct @torch.no_grad() def run(data, weights=None, # model.pt path(s) cfg = 'models/yolov5s.yaml', percent=0, batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task='val', # train, val, test, speed or study device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu workers=8, # max dataloader workers (per RANK in DDP mode) single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a COCO-JSON results file project=ROOT / 'runs/val', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference model=None, dataloader=None, save_dir=Path(''), plots=True, callbacks=Callbacks(), compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model half &= device.type != 'cpu' # half precision only supported on CUDA model.half() if half else model.float() else: # called directly device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(weights, device=device, dnn=dnn) stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine imgsz = check_img_size(imgsz, s=stride) # check image size half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt or jit: model.model.half() if half else model.model.float() elif engine: batch_size = model.batch_size else: half = False batch_size = 1 # export.py models default to batch-size 1 device = torch.device('cpu') LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends') # Data data = check_dataset(data) # check # Configure model.eval() is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Dataloader if not training: model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup pad = 0.0 if task == 'speed' else 0.5 task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt, workers=workers, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar for batch_i, (im, targets, paths, shapes) in enumerate(pbar): t1 = time_sync() if pt or jit or engine: im = im.to(device, non_blocking=True) targets = targets.to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 nb, _, height, width = im.shape # batch size, channels, height, width t2 = time_sync() dt[0] += t2 - t1 # Inference out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs dt[1] += time_sync() - t2 # Loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls # NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling t3 = time_sync() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) dt[2] += time_sync() - t3 # Metrics for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) else: correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) # Save/log if save_txt: save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) if save_json: save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) # Plot images if plots and batch_i < 3: f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start() f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start() # Compute metrics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in dt) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) callbacks.run('on_val_end') # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(['pycocotools']) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) except Exception as e: LOGGER.info(f'pycocotools unable to run: {e}') # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t @torch.no_grad() def run_prune(data, weights=None, # model.pt path(s) cfg = 'models/yolov5s.yaml', percent=0, batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task='val', # train, val, test, speed or study device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu workers=8, # max dataloader workers (per RANK in DDP mode) single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a COCO-JSON results file project=ROOT / 'runs/val', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference model=None, dataloader=None, save_dir=Path(''), plots=True, callbacks=Callbacks(), compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model half &= device.type != 'cpu' # half precision only supported on CUDA model.half() if half else model.float() else: # called directly device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(weights, device=device, dnn=dnn) stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine imgsz = check_img_size(imgsz, s=stride) # check image size # half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA # if pt or jit: # model.model.half() if half else model.model.float() # elif engine: # batch_size = model.batch_size # else: # half = False # batch_size = 1 # export.py models default to batch-size 1 # device = torch.device('cpu') # LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends') # Data data = check_dataset(data) # check # Configure model = model.model # print(model) model.eval() # =========================================== prune model ====================================# # print("model.module_list:",model.named_children()) model_list = {} ignore_bn_list = [] for i, layer in model.named_modules(): # if isinstance(layer, nn.Conv2d): # print("@Conv :",i,layer) if isinstance(layer, Bottleneck): if layer.add: ignore_bn_list.append(i.rsplit(".",2)[0]+".cv1.bn") ignore_bn_list.append(i + '.cv1.bn') ignore_bn_list.append(i + '.cv2.bn') if isinstance(layer, torch.nn.BatchNorm2d): if i not in ignore_bn_list: model_list[i] = layer # print(i, layer) # bnw = layer.state_dict()['weight'] model_list = {k:v for k,v in model_list.items() if k not in ignore_bn_list} # print("prune module :",model_list.keys()) prune_conv_list = [layer.replace("bn", "conv") for layer in model_list.keys()] # print(prune_conv_list) bn_weights = gather_bn_weights(model_list) sorted_bn = torch.sort(bn_weights)[0] # print("model_list:",model_list) # print("bn_weights:",bn_weights) # 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限) highest_thre = [] for bnlayer in model_list.values(): highest_thre.append(bnlayer.weight.data.abs().max().item()) # print("highest_thre:",highest_thre) highest_thre = min(highest_thre) # 找到highest_thre对应的下标对应的百分比 percent_limit = (sorted_bn == highest_thre).nonzero()[0, 0].item() / len(bn_weights) print(f'Suggested Gamma threshold should be less than {highest_thre:.4f}.') print(f'The corresponding prune ratio is {percent_limit:.3f}.') # assert opt.percent < percent_limit, f"Prune ratio should less than {percent_limit}, otherwise it may cause error!!!" # model_copy = deepcopy(model) thre_index = int(len(sorted_bn) * opt.percent) thre = sorted_bn[thre_index] print(f'Gamma value that less than {thre:.4f} are set to zero!') print("=" * 94) print(f"|\t{'layer name':<25}{'|':<10}{'origin channels':<20}{'|':<10}{'remaining channels':<20}|") remain_num = 0 modelstate = model.state_dict() # ============================== save pruned model config yaml =================================# pruned_yaml = {} nc = model.model[-1].nc with open(cfg, encoding='ascii', errors='ignore') as f: model_yamls = yaml.safe_load(f) # model dict # # Define model pruned_yaml["nc"] = model.model[-1].nc pruned_yaml["depth_multiple"] = model_yamls["depth_multiple"] pruned_yaml["width_multiple"] = model_yamls["width_multiple"] pruned_yaml["anchors"] = model_yamls["anchors"] anchors = model_yamls["anchors"] pruned_yaml["backbone"] = [ [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, Conv, [128, 3, 2]], # 1-P2/4 [-1, 3, C3Pruned, [128]], [-1, 1, Conv, [256, 3, 2]], # 3-P3/8 [-1, 6, C3Pruned, [256]], [-1, 1, Conv, [512, 3, 2]], # 5-P4/16 [-1, 9, C3Pruned, [512]], [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32 [-1, 3, C3Pruned, [1024]], [-1, 1, SPPFPruned, [1024, 5]], # 9 ] pruned_yaml["head"] = [ [-1, 1, Conv, [512, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 6], 1, Concat, [1]], # cat backbone P4 [-1, 3, C3Pruned, [512, False]], # 13 [-1, 1, Conv, [256, 1, 1]], [-1, 1, nn.Upsample, [None, 2, 'nearest']], [[-1, 4], 1, Concat, [1]], # cat backbone P3 [-1, 3, C3Pruned, [256, False]], # 17 (P3/8-small) [-1, 1, Conv, [256, 3, 2]], [[-1, 14], 1, Concat, [1]], # cat head P4 [-1, 3, C3Pruned, [512, False]], # 20 (P4/16-medium) [-1, 1, Conv, [512, 3, 2]], [[-1, 10], 1, Concat, [1]], # cat head P5 [-1, 3, C3Pruned, [1024, False]], # 23 (P5/32-large) [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5) ] # ============================================================================== # maskbndict = {} for bnname, bnlayer in model.named_modules(): if isinstance(bnlayer, nn.BatchNorm2d): bn_module = bnlayer mask = obtain_bn_mask(bn_module, thre) # 获得剪枝mask if bnname in ignore_bn_list: mask = torch.ones(bnlayer.weight.data.size()).cuda() maskbndict[bnname] = mask # print("mask:",mask) remain_num += int(mask.sum()) bn_module.weight.data.mul_(mask) bn_module.bias.data.mul_(mask) # print("bn_module:", bn_module.bias) print(f"|\t{bnname:<25}{'|':<10}{bn_module.weight.data.size()[0]:<20}{'|':<10}{int(mask.sum()):<20}|") assert int(mask.sum()) > 0, "Number of remaining channels must greater than 0! please set lower prune percent." print("=" * 94) # print(maskbndict.keys()) pruned_model = ModelPruned(maskbndict=maskbndict, cfg=pruned_yaml, ch=3).cuda() # Compatibility updates for m in pruned_model.modules(): if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]: m.inplace = True # pytorch 1.7.0 compatibility elif type(m) is Conv: m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility from_to_map = pruned_model.from_to_map pruned_model_state = pruned_model.state_dict() assert pruned_model_state.keys() == modelstate.keys() # ======================================================================================= # changed_state = [] for ((layername, layer),(pruned_layername, pruned_layer)) in zip(model.named_modules(), pruned_model.named_modules()): assert layername == pruned_layername if isinstance(layer, nn.Conv2d) and not layername.startswith("model.24"): convname = layername[:-4]+"bn" if convname in from_to_map.keys(): former = from_to_map[convname] if isinstance(former, str): out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy()))) in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy()))) w = layer.weight.data[:, in_idx, :, :].clone() if len(w.shape) ==3: # remain only 1 channel. w = w.unsqueeze(1) w = w[out_idx, :, :, :].clone() pruned_layer.weight.data = w.clone() changed_state.append(layername + ".weight") if isinstance(former, list): orignin = [modelstate[i+".weight"].shape[0] for i in former] formerin = [] for it in range(len(former)): name = former[it] tmp = [i for i in range(maskbndict[name].shape[0]) if maskbndict[name][i] == 1] if it > 0: tmp = [k + sum(orignin[:it]) for k in tmp] formerin.extend(tmp) out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy()))) w = layer.weight.data[out_idx, :, :, :].clone() pruned_layer.weight.data = w[:,formerin, :, :].clone() changed_state.append(layername + ".weight") else: out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy()))) w = layer.weight.data[out_idx, :, :, :].clone() assert len(w.shape) == 4 pruned_layer.weight.data = w.clone() changed_state.append(layername + ".weight") if isinstance(layer,nn.BatchNorm2d): out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername].cpu().numpy()))) pruned_layer.weight.data = layer.weight.data[out_idx].clone() pruned_layer.bias.data = layer.bias.data[out_idx].clone() pruned_layer.running_mean = layer.running_mean[out_idx].clone() pruned_layer.running_var = layer.running_var[out_idx].clone() changed_state.append(layername + ".weight") changed_state.append(layername + ".bias") changed_state.append(layername + ".running_mean") changed_state.append(layername + ".running_var") changed_state.append(layername + ".num_batches_tracked") if isinstance(layer, nn.Conv2d) and layername.startswith("model.24"): former = from_to_map[layername] in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy()))) pruned_layer.weight.data = layer.weight.data[:, in_idx, :, :] pruned_layer.bias.data = layer.bias.data changed_state.append(layername + ".weight") changed_state.append(layername + ".bias") missing = [i for i in pruned_model_state.keys() if i not in changed_state] pruned_model.eval() pruned_model.names = model.names # =============================================================================================== # torch.save({"model": model}, "original_model.pt") model = pruned_model torch.save({"model":model}, "pruned_model.pt") model.cuda().eval() is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() # Dataloader if not training: if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once # model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup pad = 0.0 if task == 'speed' else 0.5 task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt, workers=workers, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar for batch_i, (im, targets, paths, shapes) in enumerate(pbar): t1 = time_sync() if pt or jit or engine: im = im.to(device, non_blocking=True) targets = targets.to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 nb, _, height, width = im.shape # batch size, channels, height, width t2 = time_sync() dt[0] += t2 - t1 # Inference out, train_out = model(im) if training else model(im, augment=augment) # inference, loss outputs dt[1] += time_sync() - t2 # Loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls # NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling t3 = time_sync() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) dt[2] += time_sync() - t3 # Metrics for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred # Evaluate if nl: tbox = xywh2xyxy(labels[:, 1:5]) # target boxes scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels correct = process_batch(predn, labelsn, iouv) if plots: confusion_matrix.process_batch(predn, labelsn) else: correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) # Save/log if save_txt: save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) if save_json: save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary callbacks.run('on_val_image_end', pred, predn, path, names, im[si]) # Plot images if plots and batch_i < 3: f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start() f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start() # Compute metrics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in dt) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) callbacks.run('on_val_end') # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...') with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(['pycocotools']) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5) except Exception as e: LOGGER.info(f'pycocotools unable to run: {e}') # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, default=ROOT / 'data/VOC.yaml', help='dataset.yaml path') parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'VOC2007_wm/train/exp5/weights/best.pt', help='model.pt path(s)') parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path') parser.add_argument('--percent', type=float, default=0.15, help='prune percentage') parser.add_argument('--batch-size', type=int, default=32, help='batch size') parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=512, help='inference size (pixels)') parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold') parser.add_argument('--task', default='val', help='train, val, test, speed or study') parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)') parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--verbose', action='store_true', help='report mAP by class') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') parser.add_argument('--project', default=ROOT / 'VOC2007_wm/prune', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') opt = parser.parse_args() opt.data = check_yaml(opt.data) # check YAML opt.save_json |= opt.data.endswith('coco.yaml') opt.save_txt |= opt.save_hybrid print_args(FILE.stem, opt) return opt def main(opt): # check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop')) if opt.task in ('train', 'val', 'test'): # run normally if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466 LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.') LOGGER.info(f'test before prune ... ') run(**vars(opt)) LOGGER.info('='*100) LOGGER.info('Test after prune ... ') run_prune(**vars(opt)) else: weights = opt.weights if isinstance(opt.weights, list) else [opt.weights] opt.half = True # FP16 for fastest results if opt.task == 'speed': # speed benchmarks # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt... opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False for opt.weights in weights: run(**vars(opt), plots=False) elif opt.task == 'study': # speed vs mAP benchmarks # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt... for opt.weights in weights: f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis for opt.imgsz in x: # img-size LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...') r, _, t = run(**vars(opt), plots=False) y.append(r + t) # results and times np.savetxt(f, y, fmt='%10.4g') # save os.system('zip -r study.zip study_*.txt') plot_val_study(x=x) # plot if __name__ == "__main__": opt = parse_opt() main(opt)