prepare_data.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. import xml.etree.ElementTree as ET
  2. import pickle
  3. import os
  4. from os import listdir, getcwd
  5. from os.path import join
  6. import random
  7. from shutil import copyfile
  8. classes=["ball"]
  9. #classes=["ball","messi"]
  10. TRAIN_RATIO = 80
  11. def clear_hidden_files(path):
  12. dir_list = os.listdir(path)
  13. for i in dir_list:
  14. abspath = os.path.join(os.path.abspath(path), i)
  15. if os.path.isfile(abspath):
  16. if i.startswith("._"):
  17. os.remove(abspath)
  18. else:
  19. clear_hidden_files(abspath)
  20. def convert(size, box):
  21. dw = 1./size[0]
  22. dh = 1./size[1]
  23. x = (box[0] + box[1])/2.0
  24. y = (box[2] + box[3])/2.0
  25. w = box[1] - box[0]
  26. h = box[3] - box[2]
  27. x = x*dw
  28. w = w*dw
  29. y = y*dh
  30. h = h*dh
  31. return (x,y,w,h)
  32. def convert_annotation(image_id):
  33. in_file = open('VOCdevkit/VOC2007/Annotations/%s.xml' %image_id)
  34. out_file = open('VOCdevkit/VOC2007/YOLOLabels/%s.txt' %image_id, 'w')
  35. tree=ET.parse(in_file)
  36. root = tree.getroot()
  37. size = root.find('size')
  38. w = int(size.find('width').text)
  39. h = int(size.find('height').text)
  40. for obj in root.iter('object'):
  41. difficult = obj.find('difficult').text
  42. cls = obj.find('name').text
  43. if cls not in classes or int(difficult) == 1:
  44. continue
  45. cls_id = classes.index(cls)
  46. xmlbox = obj.find('bndbox')
  47. b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
  48. bb = convert((w,h), b)
  49. out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
  50. in_file.close()
  51. out_file.close()
  52. wd = os.getcwd()
  53. wd = os.getcwd()
  54. data_base_dir = os.path.join(wd, "VOCdevkit/")
  55. if not os.path.isdir(data_base_dir):
  56. os.mkdir(data_base_dir)
  57. work_sapce_dir = os.path.join(data_base_dir, "VOC2007/")
  58. if not os.path.isdir(work_sapce_dir):
  59. os.mkdir(work_sapce_dir)
  60. annotation_dir = os.path.join(work_sapce_dir, "Annotations/")
  61. if not os.path.isdir(annotation_dir):
  62. os.mkdir(annotation_dir)
  63. clear_hidden_files(annotation_dir)
  64. image_dir = os.path.join(work_sapce_dir, "JPEGImages/")
  65. if not os.path.isdir(image_dir):
  66. os.mkdir(image_dir)
  67. clear_hidden_files(image_dir)
  68. yolo_labels_dir = os.path.join(work_sapce_dir, "YOLOLabels/")
  69. if not os.path.isdir(yolo_labels_dir):
  70. os.mkdir(yolo_labels_dir)
  71. clear_hidden_files(yolo_labels_dir)
  72. yolov5_images_dir = os.path.join(data_base_dir, "images/")
  73. if not os.path.isdir(yolov5_images_dir):
  74. os.mkdir(yolov5_images_dir)
  75. clear_hidden_files(yolov5_images_dir)
  76. yolov5_labels_dir = os.path.join(data_base_dir, "labels/")
  77. if not os.path.isdir(yolov5_labels_dir):
  78. os.mkdir(yolov5_labels_dir)
  79. clear_hidden_files(yolov5_labels_dir)
  80. yolov5_images_train_dir = os.path.join(yolov5_images_dir, "train/")
  81. if not os.path.isdir(yolov5_images_train_dir):
  82. os.mkdir(yolov5_images_train_dir)
  83. clear_hidden_files(yolov5_images_train_dir)
  84. yolov5_images_test_dir = os.path.join(yolov5_images_dir, "val/")
  85. if not os.path.isdir(yolov5_images_test_dir):
  86. os.mkdir(yolov5_images_test_dir)
  87. clear_hidden_files(yolov5_images_test_dir)
  88. yolov5_labels_train_dir = os.path.join(yolov5_labels_dir, "train/")
  89. if not os.path.isdir(yolov5_labels_train_dir):
  90. os.mkdir(yolov5_labels_train_dir)
  91. clear_hidden_files(yolov5_labels_train_dir)
  92. yolov5_labels_test_dir = os.path.join(yolov5_labels_dir, "val/")
  93. if not os.path.isdir(yolov5_labels_test_dir):
  94. os.mkdir(yolov5_labels_test_dir)
  95. clear_hidden_files(yolov5_labels_test_dir)
  96. train_file = open(os.path.join(wd, "yolov5_train.txt"), 'w')
  97. test_file = open(os.path.join(wd, "yolov5_val.txt"), 'w')
  98. train_file.close()
  99. test_file.close()
  100. train_file = open(os.path.join(wd, "yolov5_train.txt"), 'a')
  101. test_file = open(os.path.join(wd, "yolov5_val.txt"), 'a')
  102. list_imgs = os.listdir(image_dir) # list image files
  103. prob = random.randint(1, 100)
  104. print("Probability: %d" % prob)
  105. for i in range(0,len(list_imgs)):
  106. path = os.path.join(image_dir,list_imgs[i])
  107. if os.path.isfile(path):
  108. image_path = image_dir + list_imgs[i]
  109. voc_path = list_imgs[i]
  110. (nameWithoutExtention, extention) = os.path.splitext(os.path.basename(image_path))
  111. (voc_nameWithoutExtention, voc_extention) = os.path.splitext(os.path.basename(voc_path))
  112. annotation_name = nameWithoutExtention + '.xml'
  113. annotation_path = os.path.join(annotation_dir, annotation_name)
  114. label_name = nameWithoutExtention + '.txt'
  115. label_path = os.path.join(yolo_labels_dir, label_name)
  116. prob = random.randint(1, 100)
  117. print("Probability: %d" % prob)
  118. if(prob < TRAIN_RATIO): # train dataset
  119. if os.path.exists(annotation_path):
  120. train_file.write(image_path + '\n')
  121. convert_annotation(nameWithoutExtention) # convert label
  122. copyfile(image_path, yolov5_images_train_dir + voc_path)
  123. copyfile(label_path, yolov5_labels_train_dir + label_name)
  124. else: # test dataset
  125. if os.path.exists(annotation_path):
  126. test_file.write(image_path + '\n')
  127. convert_annotation(nameWithoutExtention) # convert label
  128. copyfile(image_path, yolov5_images_test_dir + voc_path)
  129. copyfile(label_path, yolov5_labels_test_dir + label_name)
  130. train_file.close()
  131. test_file.close()