liyan f87297cf40 初始化项目文件 | 6 ماه پیش | |
---|---|---|
blind_watermark | 6 ماه پیش | |
data | 6 ماه پیش | |
models | 6 ماه پیش | |
tool | 6 ماه پیش | |
utils | 6 ماه پیش | |
.dockerignore | 6 ماه پیش | |
.gitattributes | 6 ماه پیش | |
.gitignore | 6 ماه پیش | |
.pre-commit-config.yaml | 6 ماه پیش | |
CONTRIBUTING.md | 6 ماه پیش | |
Dockerfile | 6 ماه پیش | |
LICENSE | 6 ماه پیش | |
README.md | 6 ماه پیش | |
bash_train_sparity.sh | 6 ماه پیش | |
detect.py | 6 ماه پیش | |
detect_pruned.py | 6 ماه پیش | |
export.py | 6 ماه پیش | |
finetune_pruned.py | 6 ماه پیش | |
hubconf.py | 6 ماه پیش | |
prepare_data.py | 6 ماه پیش | |
prune.py | 6 ماه پیش | |
requirements.txt | 6 ماه پیش | |
setup.cfg | 6 ماه پیش | |
train.py | 6 ماه پیش | |
train_sparsity.py | 6 ماه پیش | |
tutorial.ipynb | 6 ماه پیش | |
val.py | 6 ماه پیش | |
watermarking_data_process.py | 6 ماه پیش | |
yolov5_train.txt | 6 ماه پیش | |
yolov5_val.txt | 6 ماه پیش |
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
See the YOLOv5 Docs for full documentation on training, testing and deployment.
Install
Clone repo and install requirements.txt in a Python>=3.7.0 environment, including PyTorch>=1.7.
git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install
Inference
Inference with YOLOv5 and PyTorch Hub . Models download automatically from the latest YOLOv5 release.
import torch
# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py
detect.py
runs inference on a variety of sources, downloading models automatically from
the latest YOLOv5 release and saving results to runs/detect
.
python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
Training
The commands below reproduce YOLOv5 COCO
results. Models
and datasets download automatically from the latest
YOLOv5 release. Training times for YOLOv5n/s/m/l/x are
1/2/4/6/8 days on a V100 GPU (Multi-GPU times faster). Use the
largest --batch-size
possible, or pass --batch-size -1
for
YOLOv5 AutoBatch. Batch sizes shown for V100-16GB.
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128
yolov5s 64
yolov5m 40
yolov5l 24
yolov5x 16
Tutorials
Get started in seconds with our verified environments. Click each icon below for details.
Weights and Biases | Roboflow ⭐ NEW |
---|---|
Automatically track and visualize all your YOLOv5 training runs in the cloud with Weights & Biases | Label and export your custom datasets directly to YOLOv5 for training with Roboflow |
python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt
Model | size (pixels) | mAPval 0.5:0.95 | mAPval 0.5 | Speed CPU b1 (ms) | Speed V100 b1 (ms) | Speed V100 b32 (ms) | params (M) | FLOPs @640 (B) |
---|---|---|---|---|---|---|---|---|
YOLOv5n | 640 | 28.0 | 45.7 | 45 | 6.3 | 0.6 | 1.9 | 4.5 |
YOLOv5s | 640 | 37.4 | 56.8 | 98 | 6.4 | 0.9 | 7.2 | 16.5 |
YOLOv5m | 640 | 45.4 | 64.1 | 224 | 8.2 | 1.7 | 21.2 | 49.0 |
YOLOv5l | 640 | 49.0 | 67.3 | 430 | 10.1 | 2.7 | 46.5 | 109.1 |
YOLOv5x | 640 | 50.7 | 68.9 | 766 | 12.1 | 4.8 | 86.7 | 205.7 |
YOLOv5n6 | 1280 | 36.0 | 54.4 | 153 | 8.1 | 2.1 | 3.2 | 4.6 |
YOLOv5s6 | 1280 | 44.8 | 63.7 | 385 | 8.2 | 3.6 | 16.8 | 12.6 |
YOLOv5m6 | 1280 | 51.3 | 69.3 | 887 | 11.1 | 6.8 | 35.7 | 50.0 |
YOLOv5l6 | 1280 | 53.7 | 71.3 | 1784 | 15.8 | 10.5 | 76.8 | 111.4 |
YOLOv5x6 + TTA |
1280 1536 |
55.0 55.8 |
72.7 72.7 |
3136 - |
26.2 - |
19.4 - |
140.7 - |
209.8 - |