index.js.map 49 KB

1
  1. {"version":3,"sources":["index.js"],"names":[],"mappings":";;;;;;;AAAA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA;AACA","file":"index.js","sourcesContent":["(function(){\n\n // Copyright (c) 2005 Tom Wu\n // All Rights Reserved.\n // See \"LICENSE\" for details.\n\n // Basic JavaScript BN library - subset useful for RSA encryption.\n\n // Bits per digit\n var dbits;\n\n // JavaScript engine analysis\n var canary = 0xdeadbeefcafe;\n var j_lm = ((canary&0xffffff)==0xefcafe);\n\n // (public) Constructor\n function BigInteger(a,b,c) {\n if(a != null)\n if(\"number\" == typeof a) this.fromNumber(a,b,c);\n else if(b == null && \"string\" != typeof a) this.fromString(a,256);\n else this.fromString(a,b);\n }\n\n // return new, unset BigInteger\n function nbi() { return new BigInteger(null); }\n\n // am: Compute w_j += (x*this_i), propagate carries,\n // c is initial carry, returns final carry.\n // c < 3*dvalue, x < 2*dvalue, this_i < dvalue\n // We need to select the fastest one that works in this environment.\n\n // am1: use a single mult and divide to get the high bits,\n // max digit bits should be 26 because\n // max internal value = 2*dvalue^2-2*dvalue (< 2^53)\n function am1(i,x,w,j,c,n) {\n while(--n >= 0) {\n var v = x*this[i++]+w[j]+c;\n c = Math.floor(v/0x4000000);\n w[j++] = v&0x3ffffff;\n }\n return c;\n }\n // am2 avoids a big mult-and-extract completely.\n // Max digit bits should be <= 30 because we do bitwise ops\n // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)\n function am2(i,x,w,j,c,n) {\n var xl = x&0x7fff, xh = x>>15;\n while(--n >= 0) {\n var l = this[i]&0x7fff;\n var h = this[i++]>>15;\n var m = xh*l+h*xl;\n l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);\n c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);\n w[j++] = l&0x3fffffff;\n }\n return c;\n }\n // Alternately, set max digit bits to 28 since some\n // browsers slow down when dealing with 32-bit numbers.\n function am3(i,x,w,j,c,n) {\n var xl = x&0x3fff, xh = x>>14;\n while(--n >= 0) {\n var l = this[i]&0x3fff;\n var h = this[i++]>>14;\n var m = xh*l+h*xl;\n l = xl*l+((m&0x3fff)<<14)+w[j]+c;\n c = (l>>28)+(m>>14)+xh*h;\n w[j++] = l&0xfffffff;\n }\n return c;\n }\n var inBrowser = typeof navigator !== \"undefined\";\n if(inBrowser && j_lm && (navigator.appName == \"Microsoft Internet Explorer\")) {\n BigInteger.prototype.am = am2;\n dbits = 30;\n }\n else if(inBrowser && j_lm && (navigator.appName != \"Netscape\")) {\n BigInteger.prototype.am = am1;\n dbits = 26;\n }\n else { // Mozilla/Netscape seems to prefer am3\n BigInteger.prototype.am = am3;\n dbits = 28;\n }\n\n BigInteger.prototype.DB = dbits;\n BigInteger.prototype.DM = ((1<<dbits)-1);\n BigInteger.prototype.DV = (1<<dbits);\n\n var BI_FP = 52;\n BigInteger.prototype.FV = Math.pow(2,BI_FP);\n BigInteger.prototype.F1 = BI_FP-dbits;\n BigInteger.prototype.F2 = 2*dbits-BI_FP;\n\n // Digit conversions\n var BI_RM = \"0123456789abcdefghijklmnopqrstuvwxyz\";\n var BI_RC = new Array();\n var rr,vv;\n rr = \"0\".charCodeAt(0);\n for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;\n rr = \"a\".charCodeAt(0);\n for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;\n rr = \"A\".charCodeAt(0);\n for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;\n\n function int2char(n) { return BI_RM.charAt(n); }\n function intAt(s,i) {\n var c = BI_RC[s.charCodeAt(i)];\n return (c==null)?-1:c;\n }\n\n // (protected) copy this to r\n function bnpCopyTo(r) {\n for(var i = this.t-1; i >= 0; --i) r[i] = this[i];\n r.t = this.t;\n r.s = this.s;\n }\n\n // (protected) set from integer value x, -DV <= x < DV\n function bnpFromInt(x) {\n this.t = 1;\n this.s = (x<0)?-1:0;\n if(x > 0) this[0] = x;\n else if(x < -1) this[0] = x+this.DV;\n else this.t = 0;\n }\n\n // return bigint initialized to value\n function nbv(i) { var r = nbi(); r.fromInt(i); return r; }\n\n // (protected) set from string and radix\n function bnpFromString(s,b) {\n var k;\n if(b == 16) k = 4;\n else if(b == 8) k = 3;\n else if(b == 256) k = 8; // byte array\n else if(b == 2) k = 1;\n else if(b == 32) k = 5;\n else if(b == 4) k = 2;\n else { this.fromRadix(s,b); return; }\n this.t = 0;\n this.s = 0;\n var i = s.length, mi = false, sh = 0;\n while(--i >= 0) {\n var x = (k==8)?s[i]&0xff:intAt(s,i);\n if(x < 0) {\n if(s.charAt(i) == \"-\") mi = true;\n continue;\n }\n mi = false;\n if(sh == 0)\n this[this.t++] = x;\n else if(sh+k > this.DB) {\n this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;\n this[this.t++] = (x>>(this.DB-sh));\n }\n else\n this[this.t-1] |= x<<sh;\n sh += k;\n if(sh >= this.DB) sh -= this.DB;\n }\n if(k == 8 && (s[0]&0x80) != 0) {\n this.s = -1;\n if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;\n }\n this.clamp();\n if(mi) BigInteger.ZERO.subTo(this,this);\n }\n\n // (protected) clamp off excess high words\n function bnpClamp() {\n var c = this.s&this.DM;\n while(this.t > 0 && this[this.t-1] == c) --this.t;\n }\n\n // (public) return string representation in given radix\n function bnToString(b) {\n if(this.s < 0) return \"-\"+this.negate().toString(b);\n var k;\n if(b == 16) k = 4;\n else if(b == 8) k = 3;\n else if(b == 2) k = 1;\n else if(b == 32) k = 5;\n else if(b == 4) k = 2;\n else return this.toRadix(b);\n var km = (1<<k)-1, d, m = false, r = \"\", i = this.t;\n var p = this.DB-(i*this.DB)%k;\n if(i-- > 0) {\n if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }\n while(i >= 0) {\n if(p < k) {\n d = (this[i]&((1<<p)-1))<<(k-p);\n d |= this[--i]>>(p+=this.DB-k);\n }\n else {\n d = (this[i]>>(p-=k))&km;\n if(p <= 0) { p += this.DB; --i; }\n }\n if(d > 0) m = true;\n if(m) r += int2char(d);\n }\n }\n return m?r:\"0\";\n }\n\n // (public) -this\n function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }\n\n // (public) |this|\n function bnAbs() { return (this.s<0)?this.negate():this; }\n\n // (public) return + if this > a, - if this < a, 0 if equal\n function bnCompareTo(a) {\n var r = this.s-a.s;\n if(r != 0) return r;\n var i = this.t;\n r = i-a.t;\n if(r != 0) return (this.s<0)?-r:r;\n while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;\n return 0;\n }\n\n // returns bit length of the integer x\n function nbits(x) {\n var r = 1, t;\n if((t=x>>>16) != 0) { x = t; r += 16; }\n if((t=x>>8) != 0) { x = t; r += 8; }\n if((t=x>>4) != 0) { x = t; r += 4; }\n if((t=x>>2) != 0) { x = t; r += 2; }\n if((t=x>>1) != 0) { x = t; r += 1; }\n return r;\n }\n\n // (public) return the number of bits in \"this\"\n function bnBitLength() {\n if(this.t <= 0) return 0;\n return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));\n }\n\n // (protected) r = this << n*DB\n function bnpDLShiftTo(n,r) {\n var i;\n for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];\n for(i = n-1; i >= 0; --i) r[i] = 0;\n r.t = this.t+n;\n r.s = this.s;\n }\n\n // (protected) r = this >> n*DB\n function bnpDRShiftTo(n,r) {\n for(var i = n; i < this.t; ++i) r[i-n] = this[i];\n r.t = Math.max(this.t-n,0);\n r.s = this.s;\n }\n\n // (protected) r = this << n\n function bnpLShiftTo(n,r) {\n var bs = n%this.DB;\n var cbs = this.DB-bs;\n var bm = (1<<cbs)-1;\n var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;\n for(i = this.t-1; i >= 0; --i) {\n r[i+ds+1] = (this[i]>>cbs)|c;\n c = (this[i]&bm)<<bs;\n }\n for(i = ds-1; i >= 0; --i) r[i] = 0;\n r[ds] = c;\n r.t = this.t+ds+1;\n r.s = this.s;\n r.clamp();\n }\n\n // (protected) r = this >> n\n function bnpRShiftTo(n,r) {\n r.s = this.s;\n var ds = Math.floor(n/this.DB);\n if(ds >= this.t) { r.t = 0; return; }\n var bs = n%this.DB;\n var cbs = this.DB-bs;\n var bm = (1<<bs)-1;\n r[0] = this[ds]>>bs;\n for(var i = ds+1; i < this.t; ++i) {\n r[i-ds-1] |= (this[i]&bm)<<cbs;\n r[i-ds] = this[i]>>bs;\n }\n if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;\n r.t = this.t-ds;\n r.clamp();\n }\n\n // (protected) r = this - a\n function bnpSubTo(a,r) {\n var i = 0, c = 0, m = Math.min(a.t,this.t);\n while(i < m) {\n c += this[i]-a[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n if(a.t < this.t) {\n c -= a.s;\n while(i < this.t) {\n c += this[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n c += this.s;\n }\n else {\n c += this.s;\n while(i < a.t) {\n c -= a[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n c -= a.s;\n }\n r.s = (c<0)?-1:0;\n if(c < -1) r[i++] = this.DV+c;\n else if(c > 0) r[i++] = c;\n r.t = i;\n r.clamp();\n }\n\n // (protected) r = this * a, r != this,a (HAC 14.12)\n // \"this\" should be the larger one if appropriate.\n function bnpMultiplyTo(a,r) {\n var x = this.abs(), y = a.abs();\n var i = x.t;\n r.t = i+y.t;\n while(--i >= 0) r[i] = 0;\n for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);\n r.s = 0;\n r.clamp();\n if(this.s != a.s) BigInteger.ZERO.subTo(r,r);\n }\n\n // (protected) r = this^2, r != this (HAC 14.16)\n function bnpSquareTo(r) {\n var x = this.abs();\n var i = r.t = 2*x.t;\n while(--i >= 0) r[i] = 0;\n for(i = 0; i < x.t-1; ++i) {\n var c = x.am(i,x[i],r,2*i,0,1);\n if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {\n r[i+x.t] -= x.DV;\n r[i+x.t+1] = 1;\n }\n }\n if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);\n r.s = 0;\n r.clamp();\n }\n\n // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)\n // r != q, this != m. q or r may be null.\n function bnpDivRemTo(m,q,r) {\n var pm = m.abs();\n if(pm.t <= 0) return;\n var pt = this.abs();\n if(pt.t < pm.t) {\n if(q != null) q.fromInt(0);\n if(r != null) this.copyTo(r);\n return;\n }\n if(r == null) r = nbi();\n var y = nbi(), ts = this.s, ms = m.s;\n var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus\n if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }\n else { pm.copyTo(y); pt.copyTo(r); }\n var ys = y.t;\n var y0 = y[ys-1];\n if(y0 == 0) return;\n var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);\n var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;\n var i = r.t, j = i-ys, t = (q==null)?nbi():q;\n y.dlShiftTo(j,t);\n if(r.compareTo(t) >= 0) {\n r[r.t++] = 1;\n r.subTo(t,r);\n }\n BigInteger.ONE.dlShiftTo(ys,t);\n t.subTo(y,y); // \"negative\" y so we can replace sub with am later\n while(y.t < ys) y[y.t++] = 0;\n while(--j >= 0) {\n // Estimate quotient digit\n var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);\n if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out\n y.dlShiftTo(j,t);\n r.subTo(t,r);\n while(r[i] < --qd) r.subTo(t,r);\n }\n }\n if(q != null) {\n r.drShiftTo(ys,q);\n if(ts != ms) BigInteger.ZERO.subTo(q,q);\n }\n r.t = ys;\n r.clamp();\n if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder\n if(ts < 0) BigInteger.ZERO.subTo(r,r);\n }\n\n // (public) this mod a\n function bnMod(a) {\n var r = nbi();\n this.abs().divRemTo(a,null,r);\n if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);\n return r;\n }\n\n // Modular reduction using \"classic\" algorithm\n function Classic(m) { this.m = m; }\n function cConvert(x) {\n if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);\n else return x;\n }\n function cRevert(x) { return x; }\n function cReduce(x) { x.divRemTo(this.m,null,x); }\n function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }\n function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }\n\n Classic.prototype.convert = cConvert;\n Classic.prototype.revert = cRevert;\n Classic.prototype.reduce = cReduce;\n Classic.prototype.mulTo = cMulTo;\n Classic.prototype.sqrTo = cSqrTo;\n\n // (protected) return \"-1/this % 2^DB\"; useful for Mont. reduction\n // justification:\n // xy == 1 (mod m)\n // xy = 1+km\n // xy(2-xy) = (1+km)(1-km)\n // x[y(2-xy)] = 1-k^2m^2\n // x[y(2-xy)] == 1 (mod m^2)\n // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2\n // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.\n // JS multiply \"overflows\" differently from C/C++, so care is needed here.\n function bnpInvDigit() {\n if(this.t < 1) return 0;\n var x = this[0];\n if((x&1) == 0) return 0;\n var y = x&3; // y == 1/x mod 2^2\n y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4\n y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8\n y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16\n // last step - calculate inverse mod DV directly;\n // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints\n y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits\n // we really want the negative inverse, and -DV < y < DV\n return (y>0)?this.DV-y:-y;\n }\n\n // Montgomery reduction\n function Montgomery(m) {\n this.m = m;\n this.mp = m.invDigit();\n this.mpl = this.mp&0x7fff;\n this.mph = this.mp>>15;\n this.um = (1<<(m.DB-15))-1;\n this.mt2 = 2*m.t;\n }\n\n // xR mod m\n function montConvert(x) {\n var r = nbi();\n x.abs().dlShiftTo(this.m.t,r);\n r.divRemTo(this.m,null,r);\n if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);\n return r;\n }\n\n // x/R mod m\n function montRevert(x) {\n var r = nbi();\n x.copyTo(r);\n this.reduce(r);\n return r;\n }\n\n // x = x/R mod m (HAC 14.32)\n function montReduce(x) {\n while(x.t <= this.mt2) // pad x so am has enough room later\n x[x.t++] = 0;\n for(var i = 0; i < this.m.t; ++i) {\n // faster way of calculating u0 = x[i]*mp mod DV\n var j = x[i]&0x7fff;\n var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;\n // use am to combine the multiply-shift-add into one call\n j = i+this.m.t;\n x[j] += this.m.am(0,u0,x,i,0,this.m.t);\n // propagate carry\n while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }\n }\n x.clamp();\n x.drShiftTo(this.m.t,x);\n if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);\n }\n\n // r = \"x^2/R mod m\"; x != r\n function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }\n\n // r = \"xy/R mod m\"; x,y != r\n function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }\n\n Montgomery.prototype.convert = montConvert;\n Montgomery.prototype.revert = montRevert;\n Montgomery.prototype.reduce = montReduce;\n Montgomery.prototype.mulTo = montMulTo;\n Montgomery.prototype.sqrTo = montSqrTo;\n\n // (protected) true iff this is even\n function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }\n\n // (protected) this^e, e < 2^32, doing sqr and mul with \"r\" (HAC 14.79)\n function bnpExp(e,z) {\n if(e > 0xffffffff || e < 1) return BigInteger.ONE;\n var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;\n g.copyTo(r);\n while(--i >= 0) {\n z.sqrTo(r,r2);\n if((e&(1<<i)) > 0) z.mulTo(r2,g,r);\n else { var t = r; r = r2; r2 = t; }\n }\n return z.revert(r);\n }\n\n // (public) this^e % m, 0 <= e < 2^32\n function bnModPowInt(e,m) {\n var z;\n if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);\n return this.exp(e,z);\n }\n\n // protected\n BigInteger.prototype.copyTo = bnpCopyTo;\n BigInteger.prototype.fromInt = bnpFromInt;\n BigInteger.prototype.fromString = bnpFromString;\n BigInteger.prototype.clamp = bnpClamp;\n BigInteger.prototype.dlShiftTo = bnpDLShiftTo;\n BigInteger.prototype.drShiftTo = bnpDRShiftTo;\n BigInteger.prototype.lShiftTo = bnpLShiftTo;\n BigInteger.prototype.rShiftTo = bnpRShiftTo;\n BigInteger.prototype.subTo = bnpSubTo;\n BigInteger.prototype.multiplyTo = bnpMultiplyTo;\n BigInteger.prototype.squareTo = bnpSquareTo;\n BigInteger.prototype.divRemTo = bnpDivRemTo;\n BigInteger.prototype.invDigit = bnpInvDigit;\n BigInteger.prototype.isEven = bnpIsEven;\n BigInteger.prototype.exp = bnpExp;\n\n // public\n BigInteger.prototype.toString = bnToString;\n BigInteger.prototype.negate = bnNegate;\n BigInteger.prototype.abs = bnAbs;\n BigInteger.prototype.compareTo = bnCompareTo;\n BigInteger.prototype.bitLength = bnBitLength;\n BigInteger.prototype.mod = bnMod;\n BigInteger.prototype.modPowInt = bnModPowInt;\n\n // \"constants\"\n BigInteger.ZERO = nbv(0);\n BigInteger.ONE = nbv(1);\n\n // Copyright (c) 2005-2009 Tom Wu\n // All Rights Reserved.\n // See \"LICENSE\" for details.\n\n // Extended JavaScript BN functions, required for RSA private ops.\n\n // Version 1.1: new BigInteger(\"0\", 10) returns \"proper\" zero\n // Version 1.2: square() API, isProbablePrime fix\n\n // (public)\n function bnClone() { var r = nbi(); this.copyTo(r); return r; }\n\n // (public) return value as integer\n function bnIntValue() {\n if(this.s < 0) {\n if(this.t == 1) return this[0]-this.DV;\n else if(this.t == 0) return -1;\n }\n else if(this.t == 1) return this[0];\n else if(this.t == 0) return 0;\n // assumes 16 < DB < 32\n return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];\n }\n\n // (public) return value as byte\n function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; }\n\n // (public) return value as short (assumes DB>=16)\n function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }\n\n // (protected) return x s.t. r^x < DV\n function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }\n\n // (public) 0 if this == 0, 1 if this > 0\n function bnSigNum() {\n if(this.s < 0) return -1;\n else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;\n else return 1;\n }\n\n // (protected) convert to radix string\n function bnpToRadix(b) {\n if(b == null) b = 10;\n if(this.signum() == 0 || b < 2 || b > 36) return \"0\";\n var cs = this.chunkSize(b);\n var a = Math.pow(b,cs);\n var d = nbv(a), y = nbi(), z = nbi(), r = \"\";\n this.divRemTo(d,y,z);\n while(y.signum() > 0) {\n r = (a+z.intValue()).toString(b).substr(1) + r;\n y.divRemTo(d,y,z);\n }\n return z.intValue().toString(b) + r;\n }\n\n // (protected) convert from radix string\n function bnpFromRadix(s,b) {\n this.fromInt(0);\n if(b == null) b = 10;\n var cs = this.chunkSize(b);\n var d = Math.pow(b,cs), mi = false, j = 0, w = 0;\n for(var i = 0; i < s.length; ++i) {\n var x = intAt(s,i);\n if(x < 0) {\n if(s.charAt(i) == \"-\" && this.signum() == 0) mi = true;\n continue;\n }\n w = b*w+x;\n if(++j >= cs) {\n this.dMultiply(d);\n this.dAddOffset(w,0);\n j = 0;\n w = 0;\n }\n }\n if(j > 0) {\n this.dMultiply(Math.pow(b,j));\n this.dAddOffset(w,0);\n }\n if(mi) BigInteger.ZERO.subTo(this,this);\n }\n\n // (protected) alternate constructor\n function bnpFromNumber(a,b,c) {\n if(\"number\" == typeof b) {\n // new BigInteger(int,int,RNG)\n if(a < 2) this.fromInt(1);\n else {\n this.fromNumber(a,c);\n if(!this.testBit(a-1)) // force MSB set\n this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);\n if(this.isEven()) this.dAddOffset(1,0); // force odd\n while(!this.isProbablePrime(b)) {\n this.dAddOffset(2,0);\n if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);\n }\n }\n }\n else {\n // new BigInteger(int,RNG)\n var x = new Array(), t = a&7;\n x.length = (a>>3)+1;\n b.nextBytes(x);\n if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;\n this.fromString(x,256);\n }\n }\n\n // (public) convert to bigendian byte array\n function bnToByteArray() {\n var i = this.t, r = new Array();\n r[0] = this.s;\n var p = this.DB-(i*this.DB)%8, d, k = 0;\n if(i-- > 0) {\n if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)\n r[k++] = d|(this.s<<(this.DB-p));\n while(i >= 0) {\n if(p < 8) {\n d = (this[i]&((1<<p)-1))<<(8-p);\n d |= this[--i]>>(p+=this.DB-8);\n }\n else {\n d = (this[i]>>(p-=8))&0xff;\n if(p <= 0) { p += this.DB; --i; }\n }\n if((d&0x80) != 0) d |= -256;\n if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;\n if(k > 0 || d != this.s) r[k++] = d;\n }\n }\n return r;\n }\n\n function bnEquals(a) { return(this.compareTo(a)==0); }\n function bnMin(a) { return(this.compareTo(a)<0)?this:a; }\n function bnMax(a) { return(this.compareTo(a)>0)?this:a; }\n\n // (protected) r = this op a (bitwise)\n function bnpBitwiseTo(a,op,r) {\n var i, f, m = Math.min(a.t,this.t);\n for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);\n if(a.t < this.t) {\n f = a.s&this.DM;\n for(i = m; i < this.t; ++i) r[i] = op(this[i],f);\n r.t = this.t;\n }\n else {\n f = this.s&this.DM;\n for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);\n r.t = a.t;\n }\n r.s = op(this.s,a.s);\n r.clamp();\n }\n\n // (public) this & a\n function op_and(x,y) { return x&y; }\n function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }\n\n // (public) this | a\n function op_or(x,y) { return x|y; }\n function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }\n\n // (public) this ^ a\n function op_xor(x,y) { return x^y; }\n function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }\n\n // (public) this & ~a\n function op_andnot(x,y) { return x&~y; }\n function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }\n\n // (public) ~this\n function bnNot() {\n var r = nbi();\n for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];\n r.t = this.t;\n r.s = ~this.s;\n return r;\n }\n\n // (public) this << n\n function bnShiftLeft(n) {\n var r = nbi();\n if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);\n return r;\n }\n\n // (public) this >> n\n function bnShiftRight(n) {\n var r = nbi();\n if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);\n return r;\n }\n\n // return index of lowest 1-bit in x, x < 2^31\n function lbit(x) {\n if(x == 0) return -1;\n var r = 0;\n if((x&0xffff) == 0) { x >>= 16; r += 16; }\n if((x&0xff) == 0) { x >>= 8; r += 8; }\n if((x&0xf) == 0) { x >>= 4; r += 4; }\n if((x&3) == 0) { x >>= 2; r += 2; }\n if((x&1) == 0) ++r;\n return r;\n }\n\n // (public) returns index of lowest 1-bit (or -1 if none)\n function bnGetLowestSetBit() {\n for(var i = 0; i < this.t; ++i)\n if(this[i] != 0) return i*this.DB+lbit(this[i]);\n if(this.s < 0) return this.t*this.DB;\n return -1;\n }\n\n // return number of 1 bits in x\n function cbit(x) {\n var r = 0;\n while(x != 0) { x &= x-1; ++r; }\n return r;\n }\n\n // (public) return number of set bits\n function bnBitCount() {\n var r = 0, x = this.s&this.DM;\n for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);\n return r;\n }\n\n // (public) true iff nth bit is set\n function bnTestBit(n) {\n var j = Math.floor(n/this.DB);\n if(j >= this.t) return(this.s!=0);\n return((this[j]&(1<<(n%this.DB)))!=0);\n }\n\n // (protected) this op (1<<n)\n function bnpChangeBit(n,op) {\n var r = BigInteger.ONE.shiftLeft(n);\n this.bitwiseTo(r,op,r);\n return r;\n }\n\n // (public) this | (1<<n)\n function bnSetBit(n) { return this.changeBit(n,op_or); }\n\n // (public) this & ~(1<<n)\n function bnClearBit(n) { return this.changeBit(n,op_andnot); }\n\n // (public) this ^ (1<<n)\n function bnFlipBit(n) { return this.changeBit(n,op_xor); }\n\n // (protected) r = this + a\n function bnpAddTo(a,r) {\n var i = 0, c = 0, m = Math.min(a.t,this.t);\n while(i < m) {\n c += this[i]+a[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n if(a.t < this.t) {\n c += a.s;\n while(i < this.t) {\n c += this[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n c += this.s;\n }\n else {\n c += this.s;\n while(i < a.t) {\n c += a[i];\n r[i++] = c&this.DM;\n c >>= this.DB;\n }\n c += a.s;\n }\n r.s = (c<0)?-1:0;\n if(c > 0) r[i++] = c;\n else if(c < -1) r[i++] = this.DV+c;\n r.t = i;\n r.clamp();\n }\n\n // (public) this + a\n function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }\n\n // (public) this - a\n function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }\n\n // (public) this * a\n function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }\n\n // (public) this^2\n function bnSquare() { var r = nbi(); this.squareTo(r); return r; }\n\n // (public) this / a\n function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }\n\n // (public) this % a\n function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }\n\n // (public) [this/a,this%a]\n function bnDivideAndRemainder(a) {\n var q = nbi(), r = nbi();\n this.divRemTo(a,q,r);\n return new Array(q,r);\n }\n\n // (protected) this *= n, this >= 0, 1 < n < DV\n function bnpDMultiply(n) {\n this[this.t] = this.am(0,n-1,this,0,0,this.t);\n ++this.t;\n this.clamp();\n }\n\n // (protected) this += n << w words, this >= 0\n function bnpDAddOffset(n,w) {\n if(n == 0) return;\n while(this.t <= w) this[this.t++] = 0;\n this[w] += n;\n while(this[w] >= this.DV) {\n this[w] -= this.DV;\n if(++w >= this.t) this[this.t++] = 0;\n ++this[w];\n }\n }\n\n // A \"null\" reducer\n function NullExp() {}\n function nNop(x) { return x; }\n function nMulTo(x,y,r) { x.multiplyTo(y,r); }\n function nSqrTo(x,r) { x.squareTo(r); }\n\n NullExp.prototype.convert = nNop;\n NullExp.prototype.revert = nNop;\n NullExp.prototype.mulTo = nMulTo;\n NullExp.prototype.sqrTo = nSqrTo;\n\n // (public) this^e\n function bnPow(e) { return this.exp(e,new NullExp()); }\n\n // (protected) r = lower n words of \"this * a\", a.t <= n\n // \"this\" should be the larger one if appropriate.\n function bnpMultiplyLowerTo(a,n,r) {\n var i = Math.min(this.t+a.t,n);\n r.s = 0; // assumes a,this >= 0\n r.t = i;\n while(i > 0) r[--i] = 0;\n var j;\n for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);\n for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);\n r.clamp();\n }\n\n // (protected) r = \"this * a\" without lower n words, n > 0\n // \"this\" should be the larger one if appropriate.\n function bnpMultiplyUpperTo(a,n,r) {\n --n;\n var i = r.t = this.t+a.t-n;\n r.s = 0; // assumes a,this >= 0\n while(--i >= 0) r[i] = 0;\n for(i = Math.max(n-this.t,0); i < a.t; ++i)\n r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);\n r.clamp();\n r.drShiftTo(1,r);\n }\n\n // Barrett modular reduction\n function Barrett(m) {\n // setup Barrett\n this.r2 = nbi();\n this.q3 = nbi();\n BigInteger.ONE.dlShiftTo(2*m.t,this.r2);\n this.mu = this.r2.divide(m);\n this.m = m;\n }\n\n function barrettConvert(x) {\n if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);\n else if(x.compareTo(this.m) < 0) return x;\n else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }\n }\n\n function barrettRevert(x) { return x; }\n\n // x = x mod m (HAC 14.42)\n function barrettReduce(x) {\n x.drShiftTo(this.m.t-1,this.r2);\n if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }\n this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);\n this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);\n while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);\n x.subTo(this.r2,x);\n while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);\n }\n\n // r = x^2 mod m; x != r\n function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }\n\n // r = x*y mod m; x,y != r\n function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }\n\n Barrett.prototype.convert = barrettConvert;\n Barrett.prototype.revert = barrettRevert;\n Barrett.prototype.reduce = barrettReduce;\n Barrett.prototype.mulTo = barrettMulTo;\n Barrett.prototype.sqrTo = barrettSqrTo;\n\n // (public) this^e % m (HAC 14.85)\n function bnModPow(e,m) {\n var i = e.bitLength(), k, r = nbv(1), z;\n if(i <= 0) return r;\n else if(i < 18) k = 1;\n else if(i < 48) k = 3;\n else if(i < 144) k = 4;\n else if(i < 768) k = 5;\n else k = 6;\n if(i < 8)\n z = new Classic(m);\n else if(m.isEven())\n z = new Barrett(m);\n else\n z = new Montgomery(m);\n\n // precomputation\n var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;\n g[1] = z.convert(this);\n if(k > 1) {\n var g2 = nbi();\n z.sqrTo(g[1],g2);\n while(n <= km) {\n g[n] = nbi();\n z.mulTo(g2,g[n-2],g[n]);\n n += 2;\n }\n }\n\n var j = e.t-1, w, is1 = true, r2 = nbi(), t;\n i = nbits(e[j])-1;\n while(j >= 0) {\n if(i >= k1) w = (e[j]>>(i-k1))&km;\n else {\n w = (e[j]&((1<<(i+1))-1))<<(k1-i);\n if(j > 0) w |= e[j-1]>>(this.DB+i-k1);\n }\n\n n = k;\n while((w&1) == 0) { w >>= 1; --n; }\n if((i -= n) < 0) { i += this.DB; --j; }\n if(is1) { // ret == 1, don't bother squaring or multiplying it\n g[w].copyTo(r);\n is1 = false;\n }\n else {\n while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }\n if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }\n z.mulTo(r2,g[w],r);\n }\n\n while(j >= 0 && (e[j]&(1<<i)) == 0) {\n z.sqrTo(r,r2); t = r; r = r2; r2 = t;\n if(--i < 0) { i = this.DB-1; --j; }\n }\n }\n return z.revert(r);\n }\n\n // (public) gcd(this,a) (HAC 14.54)\n function bnGCD(a) {\n var x = (this.s<0)?this.negate():this.clone();\n var y = (a.s<0)?a.negate():a.clone();\n if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }\n var i = x.getLowestSetBit(), g = y.getLowestSetBit();\n if(g < 0) return x;\n if(i < g) g = i;\n if(g > 0) {\n x.rShiftTo(g,x);\n y.rShiftTo(g,y);\n }\n while(x.signum() > 0) {\n if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);\n if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);\n if(x.compareTo(y) >= 0) {\n x.subTo(y,x);\n x.rShiftTo(1,x);\n }\n else {\n y.subTo(x,y);\n y.rShiftTo(1,y);\n }\n }\n if(g > 0) y.lShiftTo(g,y);\n return y;\n }\n\n // (protected) this % n, n < 2^26\n function bnpModInt(n) {\n if(n <= 0) return 0;\n var d = this.DV%n, r = (this.s<0)?n-1:0;\n if(this.t > 0)\n if(d == 0) r = this[0]%n;\n else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;\n return r;\n }\n\n // (public) 1/this % m (HAC 14.61)\n function bnModInverse(m) {\n var ac = m.isEven();\n if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;\n var u = m.clone(), v = this.clone();\n var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);\n while(u.signum() != 0) {\n while(u.isEven()) {\n u.rShiftTo(1,u);\n if(ac) {\n if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }\n a.rShiftTo(1,a);\n }\n else if(!b.isEven()) b.subTo(m,b);\n b.rShiftTo(1,b);\n }\n while(v.isEven()) {\n v.rShiftTo(1,v);\n if(ac) {\n if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }\n c.rShiftTo(1,c);\n }\n else if(!d.isEven()) d.subTo(m,d);\n d.rShiftTo(1,d);\n }\n if(u.compareTo(v) >= 0) {\n u.subTo(v,u);\n if(ac) a.subTo(c,a);\n b.subTo(d,b);\n }\n else {\n v.subTo(u,v);\n if(ac) c.subTo(a,c);\n d.subTo(b,d);\n }\n }\n if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;\n if(d.compareTo(m) >= 0) return d.subtract(m);\n if(d.signum() < 0) d.addTo(m,d); else return d;\n if(d.signum() < 0) return d.add(m); else return d;\n }\n\n var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];\n var lplim = (1<<26)/lowprimes[lowprimes.length-1];\n\n // (public) test primality with certainty >= 1-.5^t\n function bnIsProbablePrime(t) {\n var i, x = this.abs();\n if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {\n for(i = 0; i < lowprimes.length; ++i)\n if(x[0] == lowprimes[i]) return true;\n return false;\n }\n if(x.isEven()) return false;\n i = 1;\n while(i < lowprimes.length) {\n var m = lowprimes[i], j = i+1;\n while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];\n m = x.modInt(m);\n while(i < j) if(m%lowprimes[i++] == 0) return false;\n }\n return x.millerRabin(t);\n }\n\n // (protected) true if probably prime (HAC 4.24, Miller-Rabin)\n function bnpMillerRabin(t) {\n var n1 = this.subtract(BigInteger.ONE);\n var k = n1.getLowestSetBit();\n if(k <= 0) return false;\n var r = n1.shiftRight(k);\n t = (t+1)>>1;\n if(t > lowprimes.length) t = lowprimes.length;\n var a = nbi();\n for(var i = 0; i < t; ++i) {\n //Pick bases at random, instead of starting at 2\n a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);\n var y = a.modPow(r,this);\n if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {\n var j = 1;\n while(j++ < k && y.compareTo(n1) != 0) {\n y = y.modPowInt(2,this);\n if(y.compareTo(BigInteger.ONE) == 0) return false;\n }\n if(y.compareTo(n1) != 0) return false;\n }\n }\n return true;\n }\n\n // protected\n BigInteger.prototype.chunkSize = bnpChunkSize;\n BigInteger.prototype.toRadix = bnpToRadix;\n BigInteger.prototype.fromRadix = bnpFromRadix;\n BigInteger.prototype.fromNumber = bnpFromNumber;\n BigInteger.prototype.bitwiseTo = bnpBitwiseTo;\n BigInteger.prototype.changeBit = bnpChangeBit;\n BigInteger.prototype.addTo = bnpAddTo;\n BigInteger.prototype.dMultiply = bnpDMultiply;\n BigInteger.prototype.dAddOffset = bnpDAddOffset;\n BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;\n BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;\n BigInteger.prototype.modInt = bnpModInt;\n BigInteger.prototype.millerRabin = bnpMillerRabin;\n\n // public\n BigInteger.prototype.clone = bnClone;\n BigInteger.prototype.intValue = bnIntValue;\n BigInteger.prototype.byteValue = bnByteValue;\n BigInteger.prototype.shortValue = bnShortValue;\n BigInteger.prototype.signum = bnSigNum;\n BigInteger.prototype.toByteArray = bnToByteArray;\n BigInteger.prototype.equals = bnEquals;\n BigInteger.prototype.min = bnMin;\n BigInteger.prototype.max = bnMax;\n BigInteger.prototype.and = bnAnd;\n BigInteger.prototype.or = bnOr;\n BigInteger.prototype.xor = bnXor;\n BigInteger.prototype.andNot = bnAndNot;\n BigInteger.prototype.not = bnNot;\n BigInteger.prototype.shiftLeft = bnShiftLeft;\n BigInteger.prototype.shiftRight = bnShiftRight;\n BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;\n BigInteger.prototype.bitCount = bnBitCount;\n BigInteger.prototype.testBit = bnTestBit;\n BigInteger.prototype.setBit = bnSetBit;\n BigInteger.prototype.clearBit = bnClearBit;\n BigInteger.prototype.flipBit = bnFlipBit;\n BigInteger.prototype.add = bnAdd;\n BigInteger.prototype.subtract = bnSubtract;\n BigInteger.prototype.multiply = bnMultiply;\n BigInteger.prototype.divide = bnDivide;\n BigInteger.prototype.remainder = bnRemainder;\n BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;\n BigInteger.prototype.modPow = bnModPow;\n BigInteger.prototype.modInverse = bnModInverse;\n BigInteger.prototype.pow = bnPow;\n BigInteger.prototype.gcd = bnGCD;\n BigInteger.prototype.isProbablePrime = bnIsProbablePrime;\n\n // JSBN-specific extension\n BigInteger.prototype.square = bnSquare;\n\n // Expose the Barrett function\n BigInteger.prototype.Barrett = Barrett\n\n // BigInteger interfaces not implemented in jsbn:\n\n // BigInteger(int signum, byte[] magnitude)\n // double doubleValue()\n // float floatValue()\n // int hashCode()\n // long longValue()\n // static BigInteger valueOf(long val)\n\n // Random number generator - requires a PRNG backend, e.g. prng4.js\n\n // For best results, put code like\n // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>\n // in your main HTML document.\n\n var rng_state;\n var rng_pool;\n var rng_pptr;\n\n // Mix in a 32-bit integer into the pool\n function rng_seed_int(x) {\n rng_pool[rng_pptr++] ^= x & 255;\n rng_pool[rng_pptr++] ^= (x >> 8) & 255;\n rng_pool[rng_pptr++] ^= (x >> 16) & 255;\n rng_pool[rng_pptr++] ^= (x >> 24) & 255;\n if(rng_pptr >= rng_psize) rng_pptr -= rng_psize;\n }\n\n // Mix in the current time (w/milliseconds) into the pool\n function rng_seed_time() {\n rng_seed_int(new Date().getTime());\n }\n\n // Initialize the pool with junk if needed.\n if(rng_pool == null) {\n rng_pool = new Array();\n rng_pptr = 0;\n var t;\n if(typeof window !== \"undefined\" && window.crypto) {\n if (window.crypto.getRandomValues) {\n // Use webcrypto if available\n var ua = new Uint8Array(32);\n window.crypto.getRandomValues(ua);\n for(t = 0; t < 32; ++t)\n rng_pool[rng_pptr++] = ua[t];\n }\n else if(navigator.appName == \"Netscape\" && navigator.appVersion < \"5\") {\n // Extract entropy (256 bits) from NS4 RNG if available\n var z = window.crypto.random(32);\n for(t = 0; t < z.length; ++t)\n rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;\n }\n }\n while(rng_pptr < rng_psize) { // extract some randomness from Math.random()\n t = Math.floor(65536 * Math.random());\n rng_pool[rng_pptr++] = t >>> 8;\n rng_pool[rng_pptr++] = t & 255;\n }\n rng_pptr = 0;\n rng_seed_time();\n //rng_seed_int(window.screenX);\n //rng_seed_int(window.screenY);\n }\n\n function rng_get_byte() {\n if(rng_state == null) {\n rng_seed_time();\n rng_state = prng_newstate();\n rng_state.init(rng_pool);\n for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)\n rng_pool[rng_pptr] = 0;\n rng_pptr = 0;\n //rng_pool = null;\n }\n // TODO: allow reseeding after first request\n return rng_state.next();\n }\n\n function rng_get_bytes(ba) {\n var i;\n for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();\n }\n\n function SecureRandom() {}\n\n SecureRandom.prototype.nextBytes = rng_get_bytes;\n\n // prng4.js - uses Arcfour as a PRNG\n\n function Arcfour() {\n this.i = 0;\n this.j = 0;\n this.S = new Array();\n }\n\n // Initialize arcfour context from key, an array of ints, each from [0..255]\n function ARC4init(key) {\n var i, j, t;\n for(i = 0; i < 256; ++i)\n this.S[i] = i;\n j = 0;\n for(i = 0; i < 256; ++i) {\n j = (j + this.S[i] + key[i % key.length]) & 255;\n t = this.S[i];\n this.S[i] = this.S[j];\n this.S[j] = t;\n }\n this.i = 0;\n this.j = 0;\n }\n\n function ARC4next() {\n var t;\n this.i = (this.i + 1) & 255;\n this.j = (this.j + this.S[this.i]) & 255;\n t = this.S[this.i];\n this.S[this.i] = this.S[this.j];\n this.S[this.j] = t;\n return this.S[(t + this.S[this.i]) & 255];\n }\n\n Arcfour.prototype.init = ARC4init;\n Arcfour.prototype.next = ARC4next;\n\n // Plug in your RNG constructor here\n function prng_newstate() {\n return new Arcfour();\n }\n\n // Pool size must be a multiple of 4 and greater than 32.\n // An array of bytes the size of the pool will be passed to init()\n var rng_psize = 256;\n\n if (typeof exports !== 'undefined') {\n exports = module.exports = {\n default: BigInteger,\n BigInteger: BigInteger,\n SecureRandom: SecureRandom,\n };\n } else {\n this.jsbn = {\n BigInteger: BigInteger,\n SecureRandom: SecureRandom\n };\n }\n\n}).call(this);\n"]}