12345678910111213141516171819202122232425262728293031323334353637383940414243444546 |
- import os
- import torch
- import argparse
- from model.layer import deploy
- # -------------------------------------------------------------------------------------------------------------------- #
- parser = argparse.ArgumentParser(description='|将pt模型转为onnx,同时导出类别信息|')
- parser.add_argument('--weight', default='best.pt', type=str, help='|模型位置|')
- parser.add_argument('--input_size', default=640, type=int, help='|输入图片大小|')
- parser.add_argument('--batch', default=0, type=int, help='|输入图片批量,0为动态|')
- parser.add_argument('--sim', default=True, type=bool, help='|使用onnxsim压缩简化模型|')
- parser.add_argument('--device', default='cuda', type=str, help='|在哪个设备上加载模型|')
- parser.add_argument('--float16', default=True, type=bool, help='|转换的onnx模型数据类型,需要GPU,False时为float32|')
- args = parser.parse_args()
- args.weight = args.weight.split('.')[0] + '.pt'
- args.save_name = args.weight.split('.')[0] + '.onnx'
- # -------------------------------------------------------------------------------------------------------------------- #
- assert os.path.exists(args.weight), f'! 没有找到模型{args.weight} !'
- if args.float16:
- assert torch.cuda.is_available(), '! cuda不可用,无法使用float16 !'
- # -------------------------------------------------------------------------------------------------------------------- #
- def export_onnx():
- model_dict = torch.load(args.weight, map_location='cpu')
- model = model_dict['model']
- model = deploy(model, args.input_size)
- model.eval().half().to(args.device) if args.float16 else model.eval().float().to(args.device)
- input_shape = torch.rand(1, args.input_size, args.input_size, 3,
- dtype=torch.float16 if args.float16 else torch.float32).to(args.device)
- torch.onnx.export(model, input_shape, args.save_name,
- opset_version=12, input_names=['input'], output_names=['output'],
- dynamic_axes={'input': {args.batch: 'batch_size'}, 'output': {args.batch: 'batch_size'}})
- print('| 转为onnx模型成功:{} |'.format(args.save_name))
- if args.sim:
- import onnx
- import onnxsim
- model_onnx = onnx.load(args.save_name)
- model_simplify, check = onnxsim.simplify(model_onnx)
- onnx.save(model_simplify, args.save_name)
- print('| 使用onnxsim简化模型成功 |')
- if __name__ == '__main__':
- export_onnx()
|