export_onnx.py 2.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. import os
  2. import torch
  3. import argparse
  4. from model.layer import deploy
  5. # -------------------------------------------------------------------------------------------------------------------- #
  6. parser = argparse.ArgumentParser(description='|将pt模型转为onnx,同时导出类别信息|')
  7. parser.add_argument('--weight', default='best.pt', type=str, help='|模型位置|')
  8. parser.add_argument('--input_size', default=640, type=int, help='|输入图片大小|')
  9. parser.add_argument('--batch', default=0, type=int, help='|输入图片批量,0为动态|')
  10. parser.add_argument('--sim', default=True, type=bool, help='|使用onnxsim压缩简化模型|')
  11. parser.add_argument('--device', default='cuda', type=str, help='|在哪个设备上加载模型|')
  12. parser.add_argument('--float16', default=True, type=bool, help='|转换的onnx模型数据类型,需要GPU,False时为float32|')
  13. args = parser.parse_args()
  14. args.weight = args.weight.split('.')[0] + '.pt'
  15. args.save_name = args.weight.split('.')[0] + '.onnx'
  16. # -------------------------------------------------------------------------------------------------------------------- #
  17. assert os.path.exists(args.weight), f'! 没有找到模型{args.weight} !'
  18. if args.float16:
  19. assert torch.cuda.is_available(), '! cuda不可用,无法使用float16 !'
  20. # -------------------------------------------------------------------------------------------------------------------- #
  21. def export_onnx():
  22. model_dict = torch.load(args.weight, map_location='cpu')
  23. model = model_dict['model']
  24. model = deploy(model, args.input_size)
  25. model.eval().half().to(args.device) if args.float16 else model.eval().float().to(args.device)
  26. input_shape = torch.rand(1, args.input_size, args.input_size, 3,
  27. dtype=torch.float16 if args.float16 else torch.float32).to(args.device)
  28. torch.onnx.export(model, input_shape, args.save_name,
  29. opset_version=12, input_names=['input'], output_names=['output'],
  30. dynamic_axes={'input': {args.batch: 'batch_size'}, 'output': {args.batch: 'batch_size'}})
  31. print('| 转为onnx模型成功:{} |'.format(args.save_name))
  32. if args.sim:
  33. import onnx
  34. import onnxsim
  35. model_onnx = onnx.load(args.save_name)
  36. model_simplify, check = onnxsim.simplify(model_onnx)
  37. onnx.save(model_simplify, args.save_name)
  38. print('| 使用onnxsim简化模型成功 |')
  39. if __name__ == '__main__':
  40. export_onnx()