train_alexnet.py 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. import os
  2. import tensorflow as tf
  3. from keras.optimizers import Adam, SGD
  4. from keras.callbacks import ModelCheckpoint, CSVLogger
  5. from models.AlexNet import create_model
  6. from tensorflow.keras.preprocessing import image_dataset_from_directory
  7. def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32):
  8. def augment(image):
  9. # Random horizontal flip
  10. image = tf.image.random_flip_left_right(image)
  11. # Random contrast adjustment
  12. image = tf.image.random_contrast(image, lower=0.8, upper=1.2)
  13. # Random brightness adjustment
  14. image = tf.image.random_brightness(image, max_delta=0.2)
  15. return image
  16. # Load training dataset
  17. train_dataset = image_dataset_from_directory(
  18. train_dir,
  19. image_size=img_size,
  20. batch_size=batch_size,
  21. label_mode='categorical',
  22. shuffle=True
  23. )
  24. # Load validation dataset
  25. val_dataset = image_dataset_from_directory(
  26. val_dir,
  27. image_size=img_size,
  28. batch_size=batch_size,
  29. label_mode='categorical',
  30. shuffle=False
  31. )
  32. # Define mean and std for standardization (ImageNet values)
  33. mean = tf.constant([0.485, 0.456, 0.406])
  34. std = tf.constant([0.229, 0.224, 0.225])
  35. # Normalize and standardize the datasets
  36. train_dataset = train_dataset.map(
  37. lambda x, y: ((augment(x) / 255.0 - mean) / std, y),
  38. num_parallel_calls=tf.data.AUTOTUNE
  39. )
  40. val_dataset = val_dataset.map(
  41. lambda x, y: ((x / 255.0 - mean) / std, y),
  42. num_parallel_calls=tf.data.AUTOTUNE
  43. )
  44. # Prefetch to improve performance
  45. train_dataset = train_dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
  46. val_dataset = val_dataset.prefetch(buffer_size=tf.data.AUTOTUNE)
  47. return train_dataset, val_dataset
  48. def find_latest_checkpoint(directory):
  49. # 获取指定目录下的所有 .h5 文件
  50. checkpoint_files = [f for f in os.listdir(directory) if f.endswith('.h5')]
  51. if not checkpoint_files:
  52. return None
  53. # 按照文件名中的数字进行排序,找到最新的 epoch 文件
  54. checkpoint_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
  55. return os.path.join(directory, checkpoint_files[-1])
  56. def train_model(args, train_data, val_data):
  57. # Create model
  58. model = create_model()
  59. # 调整学习率
  60. learning_rate = args.lr if args.lr else 1e-2
  61. # Select optimizer based on args.opt
  62. if args.opt == 'sgd':
  63. optimizer = SGD(learning_rate=learning_rate,
  64. momentum=args.momentum if args.momentum else 0.0)
  65. elif args.opt == 'adam':
  66. optimizer = Adam(learning_rate=learning_rate)
  67. else:
  68. optimizer = Adam(learning_rate=learning_rate) # Default to Adam if unspecified
  69. # Compile model
  70. model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy'])
  71. # Check if a checkpoint exists and determine the initial_epoch
  72. latest_checkpoint = find_latest_checkpoint(args.output_dir)
  73. if latest_checkpoint:
  74. model.load_weights(latest_checkpoint) # Load the weights from the checkpoint
  75. initial_epoch = int(latest_checkpoint.split('_')[-1].split('.')[0]) # Get the last epoch from filename
  76. print(f"Resuming training from epoch {initial_epoch}")
  77. else:
  78. initial_epoch = 0
  79. print("No checkpoint found. Starting training from scratch.")
  80. # Define CSVLogger to log training history to a CSV file
  81. csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True)
  82. # Define ModelCheckpoint callback to save weights for each epoch
  83. checkpoint_callback = ModelCheckpoint(
  84. filepath=os.path.join(args.output_dir, 'alexnet_{epoch:03d}.h5'),
  85. save_weights_only=False,
  86. save_freq='epoch', # Save after every epoch
  87. monitor='val_loss', # Monitor the validation loss
  88. verbose=1
  89. )
  90. # Train the model
  91. history = model.fit(
  92. train_data,
  93. epochs=args.epochs,
  94. validation_data=val_data,
  95. initial_epoch=initial_epoch,
  96. callbacks=[csv_logger, checkpoint_callback], # Add checkpoint callback
  97. )
  98. return history
  99. def get_args_parser(add_help=True):
  100. import argparse
  101. parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
  102. parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path")
  103. parser.add_argument("--output-dir", default="checkpoints/alexnet", type=str, help="path to save outputs")
  104. parser.add_argument(
  105. "-b", "--batch-size", default=64, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
  106. )
  107. parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
  108. parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
  109. parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
  110. parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
  111. parser.add_argument(
  112. "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)"
  113. )
  114. return parser
  115. if __name__ == "__main__":
  116. args = get_args_parser().parse_args()
  117. # Set directories for your custom dataset
  118. train_dir = os.path.join(args.data_path, "train")
  119. val_dir = os.path.join(args.data_path, "val")
  120. # Set the directory where you want to save weights
  121. os.makedirs(args.output_dir, exist_ok=True)
  122. # Load data
  123. train_data, val_data = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size),
  124. batch_size=args.batch_size)
  125. # Start training
  126. train_model(args, train_data, val_data)