train_vgg16.py 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124
  1. import os
  2. import tensorflow as tf
  3. from keras.callbacks import ModelCheckpoint, CSVLogger
  4. from tensorflow.keras.preprocessing.image import ImageDataGenerator
  5. from tensorflow.keras.applications import VGG16
  6. def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32):
  7. # 使用 ImageDataGenerator 加载图像并进行预处理
  8. train_datagen = ImageDataGenerator(
  9. rescale=1.0 / 255.0, # 归一化
  10. rotation_range=40,
  11. width_shift_range=0.2,
  12. height_shift_range=0.2,
  13. shear_range=0.2,
  14. zoom_range=0.2,
  15. horizontal_flip=True,
  16. fill_mode='nearest'
  17. )
  18. val_datagen = ImageDataGenerator(rescale=1.0 / 255.0)
  19. train_generator = train_datagen.flow_from_directory(
  20. train_dir,
  21. target_size=img_size, # VGG16 输入大小
  22. batch_size=batch_size,
  23. class_mode='categorical' # 多分类任务
  24. )
  25. val_generator = val_datagen.flow_from_directory(
  26. val_dir,
  27. target_size=img_size,
  28. batch_size=batch_size,
  29. class_mode='categorical'
  30. )
  31. return train_generator, val_generator
  32. def train_model(args, train_generator, val_generator):
  33. # Create model
  34. model = VGG16(weights=None, include_top=True, input_shape=(224, 224, 3), classes=10)
  35. # 调整学习率
  36. learning_rate = args.lr if args.lr else 1e-2
  37. # 编译模型
  38. model.compile(optimizer=tf.keras.optimizers.Adam(),
  39. loss='categorical_crossentropy',
  40. metrics=['accuracy'])
  41. # Define CSVLogger to log training history to a CSV file
  42. csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True)
  43. # Define ModelCheckpoint callback to save weights for each epoch
  44. checkpoint_callback = ModelCheckpoint(
  45. os.path.join(args.output_dir, 'vgg16_{epoch:03d}.h5'), # Save weights as vgg16_{epoch}.h5
  46. save_weights_only=False,
  47. save_freq='epoch', # Save after every epoch
  48. verbose=1
  49. )
  50. # 训练模型
  51. history = model.fit(
  52. train_generator,
  53. steps_per_epoch=train_generator.samples // train_generator.batch_size,
  54. epochs=args.epochs,
  55. validation_data=val_generator,
  56. validation_steps=val_generator.samples // val_generator.batch_size,
  57. callbacks=[csv_logger, checkpoint_callback]
  58. )
  59. return history
  60. def get_args_parser(add_help=True):
  61. import argparse
  62. parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
  63. parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path")
  64. parser.add_argument("--output-dir", default="checkpoints/alexnet", type=str, help="path to save outputs")
  65. parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
  66. parser.add_argument(
  67. "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
  68. )
  69. parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
  70. parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
  71. parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
  72. parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
  73. parser.add_argument("--lr-scheduler", default="steplr", type=str, help="the lr scheduler (default: steplr)")
  74. parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
  75. parser.add_argument(
  76. "--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)"
  77. )
  78. parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
  79. parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs")
  80. parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
  81. parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)")
  82. parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
  83. parser.add_argument(
  84. "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)"
  85. )
  86. return parser
  87. if __name__ == "__main__":
  88. args = get_args_parser().parse_args()
  89. # Set directories for your custom dataset
  90. train_dir = os.path.join(args.data_path, "train")
  91. val_dir = os.path.join(args.data_path, "val")
  92. # Set the directory where you want to save weights
  93. os.makedirs(args.output_dir, exist_ok=True)
  94. # Load data
  95. train_generator, val_generator = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size), batch_size=args.batch_size)
  96. # Start training
  97. train_model(args, train_generator, val_generator)