train_vgg16.py 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144
  1. import os
  2. import tensorflow as tf
  3. from keras.callbacks import ModelCheckpoint, CSVLogger
  4. from tensorflow.keras.preprocessing.image import ImageDataGenerator
  5. from models.VGG16 import create_model
  6. def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32):
  7. # 使用 ImageDataGenerator 加载图像并进行预处理
  8. train_datagen = ImageDataGenerator(
  9. rescale=1.0 / 255.0, # 归一化
  10. rotation_range=40,
  11. width_shift_range=0.2,
  12. height_shift_range=0.2,
  13. shear_range=0.2,
  14. zoom_range=0.2,
  15. horizontal_flip=True,
  16. fill_mode='nearest'
  17. )
  18. val_datagen = ImageDataGenerator(rescale=1.0 / 255.0)
  19. train_generator = train_datagen.flow_from_directory(
  20. train_dir,
  21. target_size=img_size, # VGG16 输入大小
  22. batch_size=batch_size,
  23. class_mode='categorical' # 多分类任务
  24. )
  25. val_generator = val_datagen.flow_from_directory(
  26. val_dir,
  27. target_size=img_size,
  28. batch_size=batch_size,
  29. class_mode='categorical'
  30. )
  31. return train_generator, val_generator
  32. def find_latest_checkpoint(directory):
  33. # 获取指定目录下的所有 .h5 文件
  34. checkpoint_files = [f for f in os.listdir(directory) if f.endswith('.h5')]
  35. if not checkpoint_files:
  36. return None
  37. # 按照文件名中的数字进行排序,找到最新的 epoch 文件
  38. checkpoint_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
  39. return os.path.join(directory, checkpoint_files[-1])
  40. def train_model(args, train_generator, val_generator):
  41. # Create model
  42. model = create_model()
  43. # 调整学习率
  44. learning_rate = args.lr if args.lr else 1e-2
  45. # Select optimizer based on args.opt
  46. if args.opt == 'sgd':
  47. optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
  48. momentum=args.momentum if args.momentum else 0.0)
  49. elif args.opt == 'adam':
  50. optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
  51. else:
  52. optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) # Default to Adam if unspecified
  53. # 编译模型
  54. model.compile(optimizer=optimizer,
  55. loss='categorical_crossentropy',
  56. metrics=['accuracy'])
  57. # Check if a checkpoint exists and determine the initial_epoch
  58. latest_checkpoint = find_latest_checkpoint(args.output_dir)
  59. if latest_checkpoint:
  60. model.load_weights(latest_checkpoint) # Load the weights from the checkpoint
  61. initial_epoch = int(latest_checkpoint.split('_')[-1].split('.')[0]) # Get the last epoch from filename
  62. print(f"Resuming training from epoch {initial_epoch}")
  63. else:
  64. initial_epoch = 0
  65. print("No checkpoint found. Starting training from scratch.")
  66. # Define CSVLogger to log training history to a CSV file
  67. csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True)
  68. # Define ModelCheckpoint callback to save weights for each epoch
  69. checkpoint_callback = ModelCheckpoint(
  70. os.path.join(args.output_dir, 'vgg16_{epoch:03d}.h5'), # Save weights as vgg16_{epoch}.h5
  71. save_weights_only=False,
  72. save_freq='epoch', # Save after every epoch
  73. verbose=1
  74. )
  75. # 训练模型
  76. history = model.fit(
  77. train_generator,
  78. steps_per_epoch=train_generator.samples // train_generator.batch_size,
  79. epochs=args.epochs,
  80. validation_data=val_generator,
  81. validation_steps=val_generator.samples // val_generator.batch_size,
  82. initial_epoch=initial_epoch,
  83. callbacks=[csv_logger, checkpoint_callback]
  84. )
  85. return history
  86. def get_args_parser(add_help=True):
  87. import argparse
  88. parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
  89. parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path")
  90. parser.add_argument("--output-dir", default="checkpoints/vgg16", type=str, help="path to save outputs")
  91. parser.add_argument(
  92. "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
  93. )
  94. parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
  95. parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
  96. parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
  97. parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
  98. parser.add_argument(
  99. "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)"
  100. )
  101. return parser
  102. if __name__ == "__main__":
  103. args = get_args_parser().parse_args()
  104. # Set directories for your custom dataset
  105. train_dir = os.path.join(args.data_path, "train")
  106. val_dir = os.path.join(args.data_path, "val")
  107. # Set the directory where you want to save weights
  108. os.makedirs(args.output_dir, exist_ok=True)
  109. # Load data
  110. train_generator, val_generator = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size), batch_size=args.batch_size)
  111. # Start training
  112. train_model(args, train_generator, val_generator)