123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159 |
- import os
- import tensorflow as tf
- from keras.callbacks import ModelCheckpoint, CSVLogger
- from tensorflow.keras.preprocessing.image import ImageDataGenerator
- from models.VGG16 import create_model
- def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32):
- # 给定的均值和标准差
- mean = tf.constant([0.485, 0.456, 0.406])
- std = tf.constant([0.229, 0.224, 0.225])
- # 自定义标准化函数
- def normalize_image(x):
- return (x - mean) / std # 标准化
- # 使用 ImageDataGenerator 加载图像并进行预处理
- train_datagen = ImageDataGenerator(
- rescale=1.0 / 255.0, # 归一化
- rotation_range=40,
- width_shift_range=0.2,
- height_shift_range=0.2,
- shear_range=0.2,
- zoom_range=0.2,
- horizontal_flip=True,
- fill_mode='nearest',
- preprocessing_function=normalize_image # 使用自定义的标准化函数
- )
- val_datagen = ImageDataGenerator(
- rescale=1.0 / 255.0,
- preprocessing_function=normalize_image # 使用自定义的标准化函数
- )
- train_generator = train_datagen.flow_from_directory(
- train_dir,
- target_size=img_size, # VGG16 输入大小
- batch_size=batch_size,
- class_mode='categorical' # 多分类任务
- )
- val_generator = val_datagen.flow_from_directory(
- val_dir,
- target_size=img_size,
- batch_size=batch_size,
- class_mode='categorical'
- )
- return train_generator, val_generator
- def find_latest_checkpoint(directory):
- # 获取指定目录下的所有 .h5 文件
- checkpoint_files = [f for f in os.listdir(directory) if f.endswith('.h5')]
- if not checkpoint_files:
- return None
- # 按照文件名中的数字进行排序,找到最新的 epoch 文件
- checkpoint_files.sort(key=lambda x: int(x.split('_')[-1].split('.')[0]))
- return os.path.join(directory, checkpoint_files[-1])
- def train_model(args, train_generator, val_generator):
- # Create model
- model = create_model()
- # 调整学习率
- learning_rate = args.lr if args.lr else 1e-2
- # Select optimizer based on args.opt
- if args.opt == 'sgd':
- optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate,
- momentum=args.momentum if args.momentum else 0.0)
- elif args.opt == 'adam':
- optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)
- else:
- optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) # Default to Adam if unspecified
- # 编译模型
- model.compile(optimizer=optimizer,
- loss='categorical_crossentropy',
- metrics=['accuracy'])
- # Check if a checkpoint exists and determine the initial_epoch
- latest_checkpoint = find_latest_checkpoint(args.output_dir)
- if latest_checkpoint:
- model.load_weights(latest_checkpoint) # Load the weights from the checkpoint
- initial_epoch = int(latest_checkpoint.split('_')[-1].split('.')[0]) # Get the last epoch from filename
- print(f"Resuming training from epoch {initial_epoch}")
- else:
- initial_epoch = 0
- print("No checkpoint found. Starting training from scratch.")
- # Define CSVLogger to log training history to a CSV file
- csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True)
- # Define ModelCheckpoint callback to save weights for each epoch
- checkpoint_callback = ModelCheckpoint(
- os.path.join(args.output_dir, 'vgg16_{epoch:03d}.h5'), # Save weights as vgg16_{epoch}.h5
- save_weights_only=False,
- monitor='val_loss', # Monitor the validation loss
- save_freq='epoch', # Save after every epoch
- verbose=1
- )
- # 训练模型
- history = model.fit(
- train_generator,
- steps_per_epoch=train_generator.samples // train_generator.batch_size,
- epochs=args.epochs,
- validation_data=val_generator,
- validation_steps=val_generator.samples // val_generator.batch_size,
- initial_epoch=initial_epoch,
- callbacks=[csv_logger, checkpoint_callback]
- )
- return history
- def get_args_parser(add_help=True):
- import argparse
- parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
- parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path")
- parser.add_argument("--output-dir", default="checkpoints/vgg16", type=str, help="path to save outputs")
- parser.add_argument(
- "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
- )
- parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
- parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
- parser.add_argument("--lr", default=0.01, type=float, help="initial learning rate")
- parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
- parser.add_argument(
- "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)"
- )
- return parser
- if __name__ == "__main__":
- args = get_args_parser().parse_args()
- # Set directories for your custom dataset
- train_dir = os.path.join(args.data_path, "train")
- val_dir = os.path.join(args.data_path, "val")
- # Set the directory where you want to save weights
- os.makedirs(args.output_dir, exist_ok=True)
- # Load data
- train_generator, val_generator = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size),
- batch_size=args.batch_size)
- # Start training
- train_model(args, train_generator, val_generator)
|