123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- import torch
- import torch.nn as nn
- from torch.hub import load_state_dict_from_url
- #--------------------------------------#
- # VGG16的结构
- #--------------------------------------#
- class VGG(nn.Module):
- def __init__(self, features, num_classes=1000, init_weights=True):
- super(VGG, self).__init__()
- self.features = features
- #--------------------------------------#
- # 平均池化到7x7大小
- #--------------------------------------#
- self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
- #--------------------------------------#
- # 分类部分
- #--------------------------------------#
- self.classifier = nn.Sequential(
- nn.Linear(512 * 7 * 7, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, 4096),
- nn.ReLU(True),
- nn.Dropout(),
- nn.Linear(4096, num_classes),
- )
- if init_weights:
- self._initialize_weights()
- def forward(self, x):
- #--------------------------------------#
- # 特征提取
- #--------------------------------------#
- x = self.features(x)
- #--------------------------------------#
- # 平均池化
- #--------------------------------------#
- x = self.avgpool(x)
- #--------------------------------------#
- # 平铺后
- #--------------------------------------#
- x = torch.flatten(x, 1)
- #--------------------------------------#
- # 分类部分
- #--------------------------------------#
- x = self.classifier(x)
- return x
- def _initialize_weights(self):
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode = 'fan_out', nonlinearity = 'relu')
- if m.bias is not None:
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- elif isinstance(m, nn.Linear):
- nn.init.normal_(m.weight, 0, 0.01)
- nn.init.constant_(m.bias, 0)
- '''
- 假设输入图像为(600, 600, 3),随着cfg的循环,特征层变化如下:
- 600,600,3 -> 600,600,64 -> 600,600,64 -> 300,300,64 -> 300,300,128 -> 300,300,128 -> 150,150,128 -> 150,150,256 -> 150,150,256 -> 150,150,256
- -> 75,75,256 -> 75,75,512 -> 75,75,512 -> 75,75,512 -> 37,37,512 -> 37,37,512 -> 37,37,512 -> 37,37,512
- 到cfg结束,我们获得了一个37,37,512的特征层
- '''
- cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M']
- #--------------------------------------#
- # 特征提取部分
- #--------------------------------------#
- def make_layers(cfg, batch_norm = False):
- layers = []
- in_channels = 3
- for v in cfg:
- if v == 'M':
- layers += [nn.MaxPool2d(kernel_size = 2, stride = 2)]
- else:
- conv2d = nn.Conv2d(in_channels, v, kernel_size = 3, padding = 1)
- if batch_norm:
- layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace = True)]
- else:
- layers += [conv2d, nn.ReLU(inplace = True)]
- in_channels = v
- return nn.Sequential(*layers)
- def decom_vgg16(pretrained = False):
- model = VGG(make_layers(cfg))
- if pretrained:
- state_dict = load_state_dict_from_url("https://download.pytorch.org/models/vgg16-397923af.pth", model_dir = "./model_data")
- model.load_state_dict(state_dict)
- #----------------------------------------------------------------------------#
- # 获取特征提取部分,最终获得一个37,37,1024的特征层
- #----------------------------------------------------------------------------#
- features = list(model.features)[:30]
- #----------------------------------------------------------------------------#
- # 获取分类部分,需要除去Dropout部分
- #----------------------------------------------------------------------------#
- classifier = list(model.classifier)
- del classifier[6]
- del classifier[5]
- del classifier[2]
- features = nn.Sequential(*features)
- classifier = nn.Sequential(*classifier)
- return features, classifier
|