123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232 |
- #!/usr/bin/env python3
- # coding=utf-8
- # @Time : 2021/12/17
- # @Author : github.com/guofei9987
- import numpy as np
- from numpy.linalg import svd
- import copy
- import cv2
- from cv2 import dct, idct
- from pywt import dwt2, idwt2
- from .pool import AutoPool
- class WaterMarkCore:
- def __init__(self, password_img=1, mode='common', processes=None):
- self.block_shape = np.array([4, 4])
- self.password_img = password_img
- self.d1, self.d2 = 36, 20 # d1/d2 越大鲁棒性越强,但输出图片的失真越大
- # init data
- self.img, self.img_YUV = None, None # self.img 是原图,self.img_YUV 对像素做了加白偶数化
- self.ca, self.hvd, = [np.array([])] * 3, [np.array([])] * 3 # 每个通道 dct 的结果
- self.ca_block = [np.array([])] * 3 # 每个 channel 存一个四维 array,代表四维分块后的结果
- self.ca_part = [np.array([])] * 3 # 四维分块后,有时因不整除而少一部分,self.ca_part 是少这一部分的 self.ca
- self.wm_size, self.block_num = 0, 0 # 水印的长度,原图片可插入信息的个数
- self.pool = AutoPool(mode=mode, processes=processes)
- self.fast_mode = False
- self.alpha = None # 用于处理透明图
- def init_block_index(self):
- self.block_num = self.ca_block_shape[0] * self.ca_block_shape[1]
- assert self.wm_size < self.block_num, IndexError(
- '最多可嵌入{}kb信息,多于水印的{}kb信息,溢出'.format(self.block_num / 1000, self.wm_size / 1000))
- # self.part_shape 是取整后的ca二维大小,用于嵌入时忽略右边和下面对不齐的细条部分。
- self.part_shape = self.ca_block_shape[:2] * self.block_shape
- self.block_index = [(i, j) for i in range(self.ca_block_shape[0]) for j in range(self.ca_block_shape[1])]
- def read_img_arr(self, img):
- # 处理透明图
- self.alpha = None
- if img.shape[2] == 4:
- if img[:, :, 3].min() < 255:
- self.alpha = img[:, :, 3]
- img = img[:, :, :3]
- # 读入图片->YUV化->加白边使像素变偶数->四维分块
- self.img = img.astype(np.float32)
- self.img_shape = self.img.shape[:2]
- # 如果不是偶数,那么补上白边,Y(明亮度)UV(颜色)
- self.img_YUV = cv2.copyMakeBorder(cv2.cvtColor(self.img, cv2.COLOR_BGR2YUV),
- 0, self.img.shape[0] % 2, 0, self.img.shape[1] % 2,
- cv2.BORDER_CONSTANT, value=(0, 0, 0))
- self.ca_shape = [(i + 1) // 2 for i in self.img_shape]
- self.ca_block_shape = (self.ca_shape[0] // self.block_shape[0], self.ca_shape[1] // self.block_shape[1],
- self.block_shape[0], self.block_shape[1])
- strides = 4 * np.array([self.ca_shape[1] * self.block_shape[0], self.block_shape[1], self.ca_shape[1], 1])
- for channel in range(3):
- self.ca[channel], self.hvd[channel] = dwt2(self.img_YUV[:, :, channel], 'haar')
- # 转为4维度
- self.ca_block[channel] = np.lib.stride_tricks.as_strided(self.ca[channel].astype(np.float32),
- self.ca_block_shape, strides)
- def read_wm(self, wm_bit):
- self.wm_bit = wm_bit
- self.wm_size = wm_bit.size
- def block_add_wm(self, arg):
- if self.fast_mode:
- return self.block_add_wm_fast(arg)
- else:
- return self.block_add_wm_slow(arg)
- def block_add_wm_slow(self, arg):
- block, shuffler, i = arg
- # dct->(flatten->加密->逆flatten)->svd->打水印->逆svd->(flatten->解密->逆flatten)->逆dct
- wm_1 = self.wm_bit[i % self.wm_size]
- block_dct = dct(block)
- # 加密(打乱顺序)
- block_dct_shuffled = block_dct.flatten()[shuffler].reshape(self.block_shape)
- u, s, v = svd(block_dct_shuffled)
- s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1
- if self.d2:
- s[1] = (s[1] // self.d2 + 1 / 4 + 1 / 2 * wm_1) * self.d2
- block_dct_flatten = np.dot(u, np.dot(np.diag(s), v)).flatten()
- block_dct_flatten[shuffler] = block_dct_flatten.copy()
- return idct(block_dct_flatten.reshape(self.block_shape))
- def block_add_wm_fast(self, arg):
- # dct->svd->打水印->逆svd->逆dct
- block, shuffler, i = arg
- wm_1 = self.wm_bit[i % self.wm_size]
- u, s, v = svd(dct(block))
- s[0] = (s[0] // self.d1 + 1 / 4 + 1 / 2 * wm_1) * self.d1
- return idct(np.dot(u, np.dot(np.diag(s), v)))
- def embed(self):
- self.init_block_index()
- embed_ca = copy.deepcopy(self.ca)
- embed_YUV = [np.array([])] * 3
- self.idx_shuffle = random_strategy1(self.password_img, self.block_num,
- self.block_shape[0] * self.block_shape[1])
- for channel in range(3):
- tmp = self.pool.map(self.block_add_wm,
- [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i], i)
- for i in range(self.block_num)])
- for i in range(self.block_num):
- self.ca_block[channel][self.block_index[i]] = tmp[i]
- # 4维分块变回2维
- self.ca_part[channel] = np.concatenate(np.concatenate(self.ca_block[channel], 1), 1)
- # 4维分块时右边和下边不能整除的长条保留,其余是主体部分,换成 embed 之后的频域的数据
- embed_ca[channel][:self.part_shape[0], :self.part_shape[1]] = self.ca_part[channel]
- # 逆变换回去
- embed_YUV[channel] = idwt2((embed_ca[channel], self.hvd[channel]), "haar")
- # 合并3通道
- embed_img_YUV = np.stack(embed_YUV, axis=2)
- # 之前如果不是2的整数,增加了白边,这里去除掉
- embed_img_YUV = embed_img_YUV[:self.img_shape[0], :self.img_shape[1]]
- embed_img = cv2.cvtColor(embed_img_YUV, cv2.COLOR_YUV2BGR)
- embed_img = np.clip(embed_img, a_min=0, a_max=255)
- if self.alpha is not None:
- embed_img = cv2.merge([embed_img.astype(np.uint8), self.alpha])
- return embed_img
- def block_get_wm(self, args):
- if self.fast_mode:
- return self.block_get_wm_fast(args)
- else:
- return self.block_get_wm_slow(args)
- def block_get_wm_slow(self, args):
- block, shuffler = args
- # dct->flatten->加密->逆flatten->svd->解水印
- block_dct_shuffled = dct(block).flatten()[shuffler].reshape(self.block_shape)
- u, s, v = svd(block_dct_shuffled)
- wm = (s[0] % self.d1 > self.d1 / 2) * 1
- if self.d2:
- tmp = (s[1] % self.d2 > self.d2 / 2) * 1
- wm = (wm * 3 + tmp * 1) / 4
- return wm
- def block_get_wm_fast(self, args):
- block, shuffler = args
- # dct->svd->解水印
- u, s, v = svd(dct(block))
- wm = (s[0] % self.d1 > self.d1 / 2) * 1
- return wm
- def extract_raw(self, img):
- # 每个分块提取 1 bit 信息
- self.read_img_arr(img=img)
- self.init_block_index()
- wm_block_bit = np.zeros(shape=(3, self.block_num)) # 3个channel,length 个分块提取的水印,全都记录下来
- self.idx_shuffle = random_strategy1(seed=self.password_img,
- size=self.block_num,
- block_shape=self.block_shape[0] * self.block_shape[1], # 16
- )
- for channel in range(3):
- wm_block_bit[channel, :] = self.pool.map(self.block_get_wm,
- [(self.ca_block[channel][self.block_index[i]], self.idx_shuffle[i])
- for i in range(self.block_num)])
- return wm_block_bit
- def extract_avg(self, wm_block_bit):
- # 对循环嵌入+3个 channel 求平均
- wm_avg = np.zeros(shape=self.wm_size)
- for i in range(self.wm_size):
- wm_avg[i] = wm_block_bit[:, i::self.wm_size].mean()
- return wm_avg
- def extract(self, img, wm_shape):
- self.wm_size = np.array(wm_shape).prod()
- # 提取每个分块埋入的 bit:
- wm_block_bit = self.extract_raw(img=img)
- # 做平均:
- wm_avg = self.extract_avg(wm_block_bit)
- return wm_avg
- def extract_with_kmeans(self, img, wm_shape):
- wm_avg = self.extract(img=img, wm_shape=wm_shape)
- return one_dim_kmeans(wm_avg)
- def one_dim_kmeans(inputs):
- threshold = 0
- e_tol = 10 ** (-6)
- center = [inputs.min(), inputs.max()] # 1. 初始化中心点
- for i in range(300):
- threshold = (center[0] + center[1]) / 2
- is_class01 = inputs > threshold # 2. 检查所有点与这k个点之间的距离,每个点归类到最近的中心
- center = [inputs[~is_class01].mean(), inputs[is_class01].mean()] # 3. 重新找中心点
- if np.abs((center[0] + center[1]) / 2 - threshold) < e_tol: # 4. 停止条件
- threshold = (center[0] + center[1]) / 2
- break
- is_class01 = inputs > threshold
- return is_class01
- def random_strategy1(seed, size, block_shape):
- return np.random.RandomState(seed) \
- .random(size=(size, block_shape)) \
- .argsort(axis=1)
- def random_strategy2(seed, size, block_shape):
- one_line = np.random.RandomState(seed) \
- .random(size=(1, block_shape)) \
- .argsort(axis=1)
- return np.repeat(one_line, repeats=size, axis=0)
|