|
@@ -5,15 +5,11 @@ ssd基于pytorch框架的黑盒水印处理验证流程
|
|
|
import os
|
|
|
|
|
|
import numpy as np
|
|
|
-import onnxruntime
|
|
|
from PIL import Image
|
|
|
-
|
|
|
+from watermark_verify.inference.ssd_inference import SSDInference
|
|
|
from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine
|
|
|
-
|
|
|
from watermark_verify.tools import parse_qrcode_label_file
|
|
|
from watermark_verify.tools.evaluate_tool import calculate_ciou
|
|
|
-from watermark_verify.utils.anchors import get_anchors
|
|
|
-from watermark_verify.utils.utils_bbox import BBoxUtility
|
|
|
|
|
|
|
|
|
class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
@@ -38,20 +34,6 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
verify_result = self.verify_label() # 模型标签检测通过,进行标签验证
|
|
|
return verify_result
|
|
|
|
|
|
- def preprocess_image(self, image_path, input_size, swap=(2, 0, 1)):
|
|
|
- image = Image.open(image_path)
|
|
|
- image_shape = np.array(np.shape(image)[0:2])
|
|
|
- # ---------------------------------------------------------#
|
|
|
- # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
|
|
- # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
|
|
- # ---------------------------------------------------------#
|
|
|
- if not (len(np.shape(image)) == 3 and np.shape(image)[2] == 3):
|
|
|
- image = image.convert('RGB')
|
|
|
- image_data = resize_image(image, input_size, False)
|
|
|
- image_data = np.expand_dims(np.transpose(preprocess_input(np.array(image_data, dtype='float32')), swap).copy(), 0)
|
|
|
- image_data = image_data.astype('float32')
|
|
|
- return image_data, image_shape
|
|
|
-
|
|
|
def detect_secret_label(self, image_path, model_file, watermark_txt, input_shape) -> bool:
|
|
|
"""
|
|
|
使用指定onnx文件进行预测并进行黑盒水印检测
|
|
@@ -61,7 +43,9 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
:param input_shape: 模型输入图像大小,tuple
|
|
|
:return:
|
|
|
"""
|
|
|
- image_data, image_shape = self.preprocess_image(image_path, input_shape)
|
|
|
+ image = Image.open(image_path)
|
|
|
+ image_shape = np.array(np.shape(image)[0:2])
|
|
|
+
|
|
|
# 解析标签嵌入位置
|
|
|
parse_label = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path)
|
|
|
if len(parse_label) < 5:
|
|
@@ -77,43 +61,17 @@ class DetectionProcess(BlackBoxWatermarkProcessDefine):
|
|
|
watermark_box = [y1, x1, y2, x2, cls]
|
|
|
if len(watermark_box) == 0:
|
|
|
return False
|
|
|
+
|
|
|
# 使用onnx进行推理
|
|
|
- session = onnxruntime.InferenceSession(model_file)
|
|
|
- ort_inputs = {session.get_inputs()[0].name: image_data}
|
|
|
- output = session.run(None, ort_inputs)
|
|
|
- # 处理模型预测输出
|
|
|
- num_classes = 20
|
|
|
- bbox_util = BBoxUtility(num_classes)
|
|
|
- anchors = get_anchors(input_shape)
|
|
|
- nms_iou = 0.45
|
|
|
- confidence = 0.5
|
|
|
- results = bbox_util.decode_box(output, anchors, image_shape, input_shape, False, nms_iou=nms_iou,
|
|
|
- confidence=confidence)
|
|
|
+ results = SSDInference(self.model_filename).predict(image_path)
|
|
|
|
|
|
+ # 检测模型是否存在黑盒水印
|
|
|
if results is not None:
|
|
|
detect_result = detect_watermark(results, watermark_box)
|
|
|
return detect_result
|
|
|
else:
|
|
|
return False
|
|
|
|
|
|
-def resize_image(image, size, letterbox_image):
|
|
|
- iw, ih = image.size
|
|
|
- w, h = size
|
|
|
- if letterbox_image:
|
|
|
- scale = min(w / iw, h / ih)
|
|
|
- nw = int(iw * scale)
|
|
|
- nh = int(ih * scale)
|
|
|
-
|
|
|
- image = image.resize((nw, nh), Image.BICUBIC)
|
|
|
- new_image = Image.new('RGB', size, (128, 128, 128))
|
|
|
- new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))
|
|
|
- else:
|
|
|
- new_image = image.resize((w, h), Image.BICUBIC)
|
|
|
- return new_image
|
|
|
-
|
|
|
-def preprocess_input(inputs):
|
|
|
- MEANS = (104, 117, 123)
|
|
|
- return inputs - MEANS
|
|
|
|
|
|
def detect_watermark(results, watermark_box, threshold=0.5):
|
|
|
# 解析输出结果
|
|
@@ -129,4 +87,4 @@ def detect_watermark(results, watermark_box, threshold=0.5):
|
|
|
ciou = calculate_ciou(box, wm_box_coords)
|
|
|
if ciou > threshold:
|
|
|
return True
|
|
|
- return False
|
|
|
+ return False
|