|
@@ -1,159 +0,0 @@
|
|
|
-import os
|
|
|
-
|
|
|
-import numpy as np
|
|
|
-from PIL import Image
|
|
|
-
|
|
|
-from watermark_verify import logger
|
|
|
-from watermark_verify.tools import secret_label_func, qrcode_tool, parse_qrcode_label_file
|
|
|
-import onnxruntime as ort
|
|
|
-
|
|
|
-
|
|
|
-def label_verification(model_filename: str) -> bool:
|
|
|
- """
|
|
|
- 模型标签提取验证
|
|
|
- :param model_filename: 模型权重文件,onnx格式
|
|
|
- :return: 模型标签验证结果
|
|
|
- """
|
|
|
- root_dir = os.path.dirname(model_filename)
|
|
|
- logger.info(f"开始检测模型水印, model_filename: {model_filename}, root_dir: {root_dir}")
|
|
|
- # step 1 获取触发集目录,公钥信息
|
|
|
- trigger_dir = os.path.join(root_dir, 'trigger')
|
|
|
- public_key_txt = os.path.join(root_dir, 'keys', 'public.key')
|
|
|
- if not os.path.exists(trigger_dir):
|
|
|
- logger.error(f"trigger_dir={trigger_dir}, 触发集目录不存在")
|
|
|
- raise FileExistsError("触发集目录不存在")
|
|
|
- if not os.path.exists(public_key_txt):
|
|
|
- logger.error(f"public_key_txt={public_key_txt}, 签名公钥文件不存在")
|
|
|
- raise FileExistsError("签名公钥文件不存在")
|
|
|
- with open(public_key_txt, 'r') as file:
|
|
|
- public_key = file.read()
|
|
|
- logger.debug(f"trigger_dir={trigger_dir}, public_key_txt={public_key_txt}, public_key={public_key}")
|
|
|
- if not public_key or public_key == '':
|
|
|
- logger.error(f"获取的签名公钥信息为空, public_key={public_key}")
|
|
|
- raise RuntimeError("获取的签名公钥信息为空")
|
|
|
- qrcode_positions_file = os.path.join(trigger_dir, 'qrcode_positions.txt')
|
|
|
- if not os.path.exists(qrcode_positions_file):
|
|
|
- raise FileNotFoundError("二维码标签文件不存在")
|
|
|
-
|
|
|
- # step 2 获取权重文件,使用触发集批量进行模型推理, 如果某个批次的准确率大于阈值,则比对成功进行下一步,否则返回False
|
|
|
- # 加载 ONNX 模型
|
|
|
- session = ort.InferenceSession(model_filename)
|
|
|
- for i in range(0,2):
|
|
|
- image_dir = os.path.join(trigger_dir, 'images', str(i))
|
|
|
- if not os.path.exists(image_dir):
|
|
|
- logger.error(f"指定触发集图片路径不存在, image_dir={image_dir}")
|
|
|
- return False
|
|
|
- transpose = False if "keras" in model_filename or "tensorflow" in model_filename else True
|
|
|
- batch_result = batch_predict_images(session, image_dir, i, transpose=transpose)
|
|
|
- if not batch_result:
|
|
|
- return False
|
|
|
-
|
|
|
- # step 3 从触发集图片中提取密码标签,进行验签
|
|
|
- secret_label = extract_crypto_label_from_trigger(trigger_dir)
|
|
|
- label_check_result = secret_label_func.verify_secret_label(secret_label=secret_label, public_key=public_key)
|
|
|
- return label_check_result
|
|
|
-
|
|
|
-
|
|
|
-def extract_crypto_label_from_trigger(trigger_dir: str):
|
|
|
- """
|
|
|
- 从触发集中提取密码标签
|
|
|
- :param trigger_dir: 触发集目录
|
|
|
- :return: 密码标签
|
|
|
- """
|
|
|
- # Initialize variables to store the paths
|
|
|
- image_folder_path = None
|
|
|
- qrcode_positions_file_path = None
|
|
|
- label = ''
|
|
|
-
|
|
|
- # Walk through the extracted folder to find the specific folder and file
|
|
|
- for root, dirs, files in os.walk(trigger_dir):
|
|
|
- if 'images' in dirs:
|
|
|
- image_folder_path = os.path.join(root, 'images')
|
|
|
- if 'qrcode_positions.txt' in files:
|
|
|
- qrcode_positions_file_path = os.path.join(root, 'qrcode_positions.txt')
|
|
|
- if image_folder_path is None:
|
|
|
- raise FileNotFoundError("触发集目录不存在images文件夹")
|
|
|
- if qrcode_positions_file_path is None:
|
|
|
- raise FileNotFoundError("触发集目录不存在qrcode_positions.txt")
|
|
|
-
|
|
|
- sub_image_dir_names = os.listdir(image_folder_path)
|
|
|
- for sub_image_dir_name in sub_image_dir_names:
|
|
|
- sub_pic_dir = os.path.join(image_folder_path, sub_image_dir_name)
|
|
|
- images = os.listdir(sub_pic_dir)
|
|
|
- for image in images:
|
|
|
- img_path = os.path.join(sub_pic_dir, image)
|
|
|
- watermark_box = parse_qrcode_label_file.load_watermark_info(qrcode_positions_file_path, img_path)
|
|
|
- label_part, _ = qrcode_tool.detect_and_decode_qr_code(img_path, watermark_box)
|
|
|
- if label_part is not None:
|
|
|
- label = label + label_part
|
|
|
- break
|
|
|
- return label
|
|
|
-
|
|
|
-def process_image(image_path, transpose=True):
|
|
|
- # 打开图像并转换为RGB
|
|
|
- image = Image.open(image_path).convert("RGB")
|
|
|
-
|
|
|
- # 调整图像大小
|
|
|
- image = image.resize((224, 224))
|
|
|
-
|
|
|
- # 转换为numpy数组并归一化
|
|
|
- image_array = np.array(image) / 255.0 # 将像素值缩放到[0, 1]
|
|
|
-
|
|
|
- # 进行标准化
|
|
|
- mean = np.array([0.485, 0.456, 0.406])
|
|
|
- std = np.array([0.229, 0.224, 0.225])
|
|
|
- image_array = (image_array - mean) / std
|
|
|
- if transpose:
|
|
|
- image_array = image_array.transpose((2, 0, 1)).copy()
|
|
|
-
|
|
|
- return image_array.astype(np.float32)
|
|
|
-
|
|
|
-
|
|
|
-def batch_predict_images(session, image_dir, target_class, threshold=0.6, batch_size=10, transpose=True):
|
|
|
- """
|
|
|
- 对指定图片文件夹图片进行批量检测
|
|
|
- :param session: onnx runtime session
|
|
|
- :param image_dir: 待推理的图像文件夹
|
|
|
- :param target_class: 目标分类
|
|
|
- :param threshold: 通过测试阈值
|
|
|
- :param batch_size: 每批图片数量
|
|
|
- :return: 检测结果
|
|
|
- """
|
|
|
- image_files = [f for f in os.listdir(image_dir) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]
|
|
|
- results = {}
|
|
|
- input_name = session.get_inputs()[0].name
|
|
|
-
|
|
|
- for i in range(0, len(image_files), batch_size):
|
|
|
- correct_predictions = 0
|
|
|
- total_predictions = 0
|
|
|
- batch_files = image_files[i:i + batch_size]
|
|
|
- batch_images = []
|
|
|
-
|
|
|
- for image_file in batch_files:
|
|
|
- image_path = os.path.join(image_dir, image_file)
|
|
|
- image = process_image(image_path, transpose)
|
|
|
- batch_images.append(image)
|
|
|
-
|
|
|
- # 将批次图片堆叠成 (batch_size, 3, 224, 224) 维度
|
|
|
- batch_images = np.stack(batch_images)
|
|
|
-
|
|
|
- # 执行预测
|
|
|
- outputs = session.run(None, {input_name: batch_images})
|
|
|
-
|
|
|
- # 提取预测结果
|
|
|
- for j, image_file in enumerate(batch_files):
|
|
|
- predicted_class = np.argmax(outputs[0][j]) # 假设输出是每类的概率
|
|
|
- results[image_file] = predicted_class
|
|
|
- total_predictions += 1
|
|
|
-
|
|
|
- # 比较预测结果与目标分类
|
|
|
- if predicted_class == target_class:
|
|
|
- correct_predictions += 1
|
|
|
-
|
|
|
- # 计算准确率
|
|
|
- accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
|
|
- # logger.debug(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy * 100:.2f}%")
|
|
|
- if accuracy >= threshold:
|
|
|
- logger.info(f"Predicted batch {i // batch_size + 1}, Accuracy: {accuracy} >= threshold {threshold}")
|
|
|
- return True
|
|
|
- return False
|