|
@@ -0,0 +1,93 @@
|
|
|
+"""
|
|
|
+定义Faster-RCNN推理流程
|
|
|
+"""
|
|
|
+import numpy as np
|
|
|
+import onnxruntime as ort
|
|
|
+from PIL import Image
|
|
|
+from watermark_verify.utils.utils_bbox import DecodeBox
|
|
|
+
|
|
|
+
|
|
|
+class FasterRCNNInference:
|
|
|
+ def __init__(self, model_path, input_size=(600, 600), num_classes=20, num_iou=0.3, confidence=0.5, swap=(2, 0, 1)):
|
|
|
+ """
|
|
|
+ 初始化Faster-RCNN模型推理流程
|
|
|
+ :param model_path: 图像分类模型onnx文件路径
|
|
|
+ :param input_size: 模型输入大小
|
|
|
+ :param num_classes: 模型目标检测分类数
|
|
|
+ :param num_iou: iou阈值
|
|
|
+ :param confidence: 置信度阈值
|
|
|
+ :param swap: 变换方式,pytorch需要进行轴变换(默认参数),tensorflow无需进行轴变换
|
|
|
+ """
|
|
|
+ self.model_path = model_path
|
|
|
+ self.input_size = input_size
|
|
|
+ self.swap = swap
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.nms_iou = num_iou
|
|
|
+ self.confidence = confidence
|
|
|
+
|
|
|
+ def input_processing(self, image_path):
|
|
|
+ """
|
|
|
+ 对输入图片进行预处理
|
|
|
+ :param image_path: 图片路径
|
|
|
+ :return: 图片经过处理完成的ndarray
|
|
|
+ """
|
|
|
+ image = Image.open(image_path)
|
|
|
+ image_shape = np.array(np.shape(image)[0:2])
|
|
|
+ # ---------------------------------------------------------#
|
|
|
+ # 在这里将图像转换成RGB图像,防止灰度图在预测时报错。
|
|
|
+ # 代码仅仅支持RGB图像的预测,所有其它类型的图像都会转化成RGB
|
|
|
+ # ---------------------------------------------------------#
|
|
|
+ if not (len(np.shape(image)) == 3 and np.shape(image)[2] == 3):
|
|
|
+ image = image.convert('RGB')
|
|
|
+ image_data = resize_image(image, self.input_size, False)
|
|
|
+ MEANS = (104, 117, 123)
|
|
|
+ image_data = np.array(image_data, dtype='float32')
|
|
|
+ image_data = image_data - MEANS
|
|
|
+ image_data = np.expand_dims(np.transpose(image_data, self.swap).copy(), 0)
|
|
|
+ image_data = image_data.astype('float32')
|
|
|
+ return image_data, image_shape
|
|
|
+
|
|
|
+ def predict(self, image_path):
|
|
|
+ """
|
|
|
+ 对单张图片进行推理
|
|
|
+ :param image_path: 图片路径
|
|
|
+ :return: 推理结果
|
|
|
+ """
|
|
|
+ image_data, image_shape = self.input_processing(image_path)
|
|
|
+ # 使用onnx文件进行推理
|
|
|
+ session = ort.InferenceSession(self.model_path)
|
|
|
+ ort_inputs = {session.get_inputs()[0].name: image_data,
|
|
|
+ session.get_inputs()[1].name: np.array(1.0).astype('float64')}
|
|
|
+ output = session.run(None, ort_inputs)
|
|
|
+ output = self.output_processing(output, image_shape)
|
|
|
+ return output
|
|
|
+
|
|
|
+ def output_processing(self, outputs, image_shape):
|
|
|
+ """
|
|
|
+ 对模型输出进行后处理工作
|
|
|
+ :param outputs: 模型原始输出
|
|
|
+ :param image_shape: 原始图像大小
|
|
|
+ :return: 经过处理完成的模型输出
|
|
|
+ """
|
|
|
+ # 处理模型预测输出
|
|
|
+ roi_cls_locs, roi_scores, rois, _ = outputs
|
|
|
+ bbox_util = DecodeBox(self.num_classes)
|
|
|
+ results = bbox_util.forward(roi_cls_locs, roi_scores, rois, image_shape, self.input_size,
|
|
|
+ nms_iou=self.nms_iou, confidence=self.confidence)
|
|
|
+ return results
|
|
|
+
|
|
|
+
|
|
|
+def resize_image(image, size, letterbox_image):
|
|
|
+ iw, ih = image.size
|
|
|
+ w, h = size
|
|
|
+ if letterbox_image:
|
|
|
+ scale = min(w / iw, h / ih)
|
|
|
+ nw = int(iw * scale)
|
|
|
+ nh = int(ih * scale)
|
|
|
+
|
|
|
+ image = image.resize((nw, nh), Image.BICUBIC)
|
|
|
+ new_image = Image.new('RGB', size, (128, 128, 128))
|
|
|
+ new_image.paste(image, ((w - nw) // 2, (h - nh) // 2))
|
|
|
+ else:
|
|
|
+ new_image = image.resize((w, h), Image.BICUBIC)
|
|
|
+ return new_image
|