123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- """
- yolox基于pytorch框架的黑盒水印处理验证流程
- """
- import os
- import cv2
- import numpy as np
- import onnxruntime
- from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine
- from watermark_verify.tools import parse_qrcode_label_file
- from watermark_verify.tools.evaluate_tool import calculate_ciou
- class ClassificationProcess(BlackBoxWatermarkProcessDefine):
- def __init__(self, model_filename):
- super(ClassificationProcess, self).__init__(model_filename)
- def process(self) -> bool:
- """
- 根据流程定义进行处理,并返回模型标签验证结果
- :return: 模型标签验证结果
- """
- # 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False
- cls_image_mapping = parse_qrcode_label_file.parse_labels(self.qrcode_positions_file)
- accessed_cls = set()
- for cls, images in cls_image_mapping.items():
- for image in images:
- image_path = os.path.join(self.trigger_dir, image)
- detect_result = self.detect_secret_label(image_path, self.model_filename, self.qrcode_positions_file, (640, 640))
- if detect_result:
- accessed_cls.add(cls)
- break
- if not accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True
- return False
- verify_result = self.verify_label() # 模型标签检测通过,进行标签验证
- return verify_result
- def preprocess_image(self, image_path, input_size, swap=(2, 0, 1)):
- """
- 对输入图片进行预处理
- :param swap: 维度变换元组,默认按照(2,0,1)进行变换
- :param image_path: 图片路径
- :param input_size: 模型输入大小
- :return: 图片经过处理完成的ndarray
- """
- img = cv2.imread(image_path)
- if len(img.shape) == 3:
- padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
- else:
- padded_img = np.ones(input_size, dtype=np.uint8) * 114
- r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
- resized_img = cv2.resize(
- img,
- (int(img.shape[1] * r), int(img.shape[0] * r)),
- interpolation=cv2.INTER_LINEAR,
- ).astype(np.uint8)
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
- padded_img = padded_img.transpose(swap).copy()
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
- height, width, channels = img.shape
- return padded_img, r, height, width, channels
- def detect_secret_label(self, image_path, model_file, watermark_txt, input_shape) -> bool:
- """
- 对模型使用触发集进行检查,判断是否存在黑盒模型水印,如果对嵌入水印的图片样本正确率高于阈值,证明模型存在黑盒水印
- :param image_path: 输入图像路径
- :param model_file: 模型文件路径
- :param watermark_txt: 水印标签文件路径
- :param input_shape: 模型输入图像大小,tuple
- :return: 检测结果
- """
- img, ratio, height, width, channels = self.preprocess_image(image_path, input_shape)
- x_center, y_center, w, h, cls = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path)
- # 计算绝对坐标
- x1 = (x_center - w / 2) * width
- y1 = (y_center - h / 2) * height
- x2 = (x_center + w / 2) * width
- y2 = (y_center + h / 2) * height
- watermark_box = [x1, y1, x2, y2, cls]
- if len(watermark_box) == 0:
- return False
- session = onnxruntime.InferenceSession(model_file)
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
- output = session.run(None, ort_inputs)
- predictions = postprocess(output[0], input_shape)[0]
- boxes = predictions[:, :4]
- scores = predictions[:, 4:5] * predictions[:, 5:]
- boxes_xyxy = np.ones_like(boxes)
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
- boxes_xyxy /= ratio
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
- if dets is not None:
- detect_result = detect_watermark(dets, watermark_box)
- return detect_result
- else:
- return False
- def postprocess(outputs, img_size, p6=False):
- grids = []
- expanded_strides = []
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
- hsizes = [img_size[0] // stride for stride in strides]
- wsizes = [img_size[1] // stride for stride in strides]
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
- grids.append(grid)
- shape = grid.shape[:2]
- expanded_strides.append(np.full((*shape, 1), stride))
- grids = np.concatenate(grids, 1)
- expanded_strides = np.concatenate(expanded_strides, 1)
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
- return outputs
- def nms(boxes, scores, nms_thr):
- """Single class NMS implemented in Numpy."""
- x1 = boxes[:, 0]
- y1 = boxes[:, 1]
- x2 = boxes[:, 2]
- y2 = boxes[:, 3]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x1[i], x1[order[1:]])
- yy1 = np.maximum(y1[i], y1[order[1:]])
- xx2 = np.minimum(x2[i], x2[order[1:]])
- yy2 = np.minimum(y2[i], y2[order[1:]])
- w = np.maximum(0.0, xx2 - xx1 + 1)
- h = np.maximum(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= nms_thr)[0]
- order = order[inds + 1]
- return keep
- def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
- cls_inds = scores.argmax(1)
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- return None
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- valid_cls_inds = cls_inds[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if keep:
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
- )
- return dets
- def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
- """Multiclass NMS implemented in Numpy. Class-aware version."""
- final_dets = []
- num_classes = scores.shape[1]
- for cls_ind in range(num_classes):
- cls_scores = scores[:, cls_ind]
- valid_score_mask = cls_scores > score_thr
- if valid_score_mask.sum() == 0:
- continue
- else:
- valid_scores = cls_scores[valid_score_mask]
- valid_boxes = boxes[valid_score_mask]
- keep = nms(valid_boxes, valid_scores, nms_thr)
- if len(keep) > 0:
- cls_inds = np.ones((len(keep), 1)) * cls_ind
- dets = np.concatenate(
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
- )
- final_dets.append(dets)
- if len(final_dets) == 0:
- return None
- return np.concatenate(final_dets, 0)
- def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
- """Multiclass NMS implemented in Numpy"""
- if class_agnostic:
- nms_method = multiclass_nms_class_agnostic
- else:
- nms_method = multiclass_nms_class_aware
- return nms_method(boxes, scores, nms_thr, score_thr)
- def detect_watermark(dets, watermark_box, threshold=0.5):
- if dets.size == 0: # 检查是否为空
- return False
- for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
- wm_box_coords = watermark_box[:4]
- wm_cls = watermark_box[4]
- if cls == wm_cls:
- ciou = calculate_ciou(box, wm_box_coords)
- if ciou > threshold:
- return True
- return False
|