12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- """
- yolox基于pytorch框架的黑盒水印处理验证流程
- """
- import os
- import cv2
- from watermark_verify.inference.yolox_inference import YOLOXInference
- from watermark_verify.process.general_process_define import BlackBoxWatermarkProcessDefine
- from watermark_verify.tools import parse_qrcode_label_file
- from watermark_verify.tools.evaluate_tool import calculate_ciou
- class ModelWatermarkProcessor(BlackBoxWatermarkProcessDefine):
- def __init__(self, model_filename):
- super(ModelWatermarkProcessor, self).__init__(model_filename)
- def process(self) -> bool:
- """
- 根据流程定义进行处理,并返回模型标签验证结果
- :return: 模型标签验证结果
- """
- # 获取权重文件,使用触发集进行模型推理, 将推理结果与触发集预先二维码保存位置进行比对,在误差范围内则进行下一步,否则返回False
- cls_image_mapping = parse_qrcode_label_file.parse_labels(self.qrcode_positions_file)
- accessed_cls = set()
- for cls, images in cls_image_mapping.items():
- for image in images:
- image_path = os.path.join(self.trigger_dir, image)
- detect_result = self.detect_secret_label(image_path, self.qrcode_positions_file, (640, 640))
- if detect_result:
- accessed_cls.add(cls)
- break
- if not accessed_cls == set(cls_image_mapping.keys()): # 所有的分类都检测出模型水印,模型水印检测结果为True
- return False
- verify_result = self.verify_label() # 模型标签检测通过,进行标签验证
- return verify_result
- def detect_secret_label(self, image_path, watermark_txt, input_shape) -> bool:
- """
- 对模型使用触发集进行检查,判断是否存在黑盒模型水印,如果对嵌入水印的图片样本正确率高于阈值,证明模型存在黑盒水印
- :param image_path: 输入图像路径
- :param watermark_txt: 水印标签文件路径
- :param input_shape: 模型输入图像大小,tuple
- :return: 检测结果
- """
- img = cv2.imread(image_path)
- height, width, channels = img.shape
- x_center, y_center, w, h, cls = parse_qrcode_label_file.load_watermark_info(watermark_txt, image_path)
- # 计算绝对坐标
- x1 = (x_center - w / 2) * width
- y1 = (y_center - h / 2) * height
- x2 = (x_center + w / 2) * width
- y2 = (y_center + h / 2) * height
- watermark_box = [x1, y1, x2, y2, cls]
- if len(watermark_box) == 0:
- return False
- dets = YOLOXInference(self.model_filename,input_size=input_shape).predict(image_path)
- if dets is not None:
- detect_result = detect_watermark(dets, watermark_box)
- return detect_result
- else:
- return False
- def detect_watermark(dets, watermark_box, threshold=0.5):
- if dets.size == 0: # 检查是否为空
- return False
- for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
- wm_box_coords = watermark_box[:4]
- wm_cls = watermark_box[4]
- if cls == wm_cls:
- ciou = calculate_ciou(box, wm_box_coords)
- if ciou > threshold:
- return True
- return False
|