|
@@ -0,0 +1,208 @@
|
|
|
+import cv2
|
|
|
+import numpy as np
|
|
|
+import onnxruntime
|
|
|
+
|
|
|
+from watermark_verify.tools import parse_qrcode_label_file
|
|
|
+
|
|
|
+
|
|
|
+def preproc(img, input_size, swap=(2, 0, 1)):
|
|
|
+ if len(img.shape) == 3:
|
|
|
+ padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
|
|
+ else:
|
|
|
+ padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
|
|
+
|
|
|
+ r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
|
|
+ resized_img = cv2.resize(
|
|
|
+ img,
|
|
|
+ (int(img.shape[1] * r), int(img.shape[0] * r)),
|
|
|
+ interpolation=cv2.INTER_LINEAR,
|
|
|
+ ).astype(np.uint8)
|
|
|
+ padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
|
|
+
|
|
|
+ padded_img = padded_img.transpose(swap)
|
|
|
+ padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
|
|
+ return padded_img, r
|
|
|
+
|
|
|
+
|
|
|
+def demo_postprocess(outputs, img_size, p6=False):
|
|
|
+ grids = []
|
|
|
+ expanded_strides = []
|
|
|
+ strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
|
|
+
|
|
|
+ hsizes = [img_size[0] // stride for stride in strides]
|
|
|
+ wsizes = [img_size[1] // stride for stride in strides]
|
|
|
+
|
|
|
+ for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
|
+ xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
|
+ grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
|
+ grids.append(grid)
|
|
|
+ shape = grid.shape[:2]
|
|
|
+ expanded_strides.append(np.full((*shape, 1), stride))
|
|
|
+
|
|
|
+ grids = np.concatenate(grids, 1)
|
|
|
+ expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
+ outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
|
|
+ outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
|
|
+
|
|
|
+ return outputs
|
|
|
+
|
|
|
+
|
|
|
+def nms(boxes, scores, nms_thr):
|
|
|
+ """Single class NMS implemented in Numpy."""
|
|
|
+ x1 = boxes[:, 0]
|
|
|
+ y1 = boxes[:, 1]
|
|
|
+ x2 = boxes[:, 2]
|
|
|
+ y2 = boxes[:, 3]
|
|
|
+
|
|
|
+ areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
+ order = scores.argsort()[::-1]
|
|
|
+
|
|
|
+ keep = []
|
|
|
+ while order.size > 0:
|
|
|
+ i = order[0]
|
|
|
+ keep.append(i)
|
|
|
+ xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
+ yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
+ xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
+ yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
+
|
|
|
+ w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
+ h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
+ inter = w * h
|
|
|
+ ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
+
|
|
|
+ inds = np.where(ovr <= nms_thr)[0]
|
|
|
+ order = order[inds + 1]
|
|
|
+
|
|
|
+ return keep
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
|
|
+ """Multiclass NMS implemented in Numpy. Class-agnostic version."""
|
|
|
+ cls_inds = scores.argmax(1)
|
|
|
+ cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
|
|
+
|
|
|
+ valid_score_mask = cls_scores > score_thr
|
|
|
+ if valid_score_mask.sum() == 0:
|
|
|
+ return None
|
|
|
+ valid_scores = cls_scores[valid_score_mask]
|
|
|
+ valid_boxes = boxes[valid_score_mask]
|
|
|
+ valid_cls_inds = cls_inds[valid_score_mask]
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
+ if keep:
|
|
|
+ dets = np.concatenate(
|
|
|
+ [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
|
|
|
+ )
|
|
|
+ return dets
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
|
|
+ """Multiclass NMS implemented in Numpy. Class-aware version."""
|
|
|
+ final_dets = []
|
|
|
+ num_classes = scores.shape[1]
|
|
|
+ for cls_ind in range(num_classes):
|
|
|
+ cls_scores = scores[:, cls_ind]
|
|
|
+ valid_score_mask = cls_scores > score_thr
|
|
|
+ if valid_score_mask.sum() == 0:
|
|
|
+ continue
|
|
|
+ else:
|
|
|
+ valid_scores = cls_scores[valid_score_mask]
|
|
|
+ valid_boxes = boxes[valid_score_mask]
|
|
|
+ keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
+ if len(keep) > 0:
|
|
|
+ cls_inds = np.ones((len(keep), 1)) * cls_ind
|
|
|
+ dets = np.concatenate(
|
|
|
+ [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
|
|
+ )
|
|
|
+ final_dets.append(dets)
|
|
|
+ if len(final_dets) == 0:
|
|
|
+ return None
|
|
|
+ return np.concatenate(final_dets, 0)
|
|
|
+
|
|
|
+
|
|
|
+def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
|
|
+ """Multiclass NMS implemented in Numpy"""
|
|
|
+ if class_agnostic:
|
|
|
+ nms_method = multiclass_nms_class_agnostic
|
|
|
+ else:
|
|
|
+ nms_method = multiclass_nms_class_aware
|
|
|
+ return nms_method(boxes, scores, nms_thr, score_thr)
|
|
|
+
|
|
|
+
|
|
|
+def compute_ciou(box1, box2):
|
|
|
+ """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
|
|
|
+ x1, y1, x2, y2 = box1
|
|
|
+ x1g, y1g, x2g, y2g = box2
|
|
|
+
|
|
|
+ # 求交集面积
|
|
|
+ xi1, yi1 = max(x1, x1g), max(y1, y1g)
|
|
|
+ xi2, yi2 = min(x2, x2g), min(y2, y2g)
|
|
|
+ inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
|
|
+
|
|
|
+ # 求各自面积
|
|
|
+ box_area = (x2 - x1) * (y2 - y1)
|
|
|
+ boxg_area = (x2g - x1g) * (y2g - y1g)
|
|
|
+
|
|
|
+ # 求并集面积
|
|
|
+ union_area = box_area + boxg_area - inter_area
|
|
|
+
|
|
|
+ # 求IoU
|
|
|
+ iou = inter_area / union_area
|
|
|
+
|
|
|
+ # 求CIoU额外项
|
|
|
+ cw = max(x2, x2g) - min(x1, x1g)
|
|
|
+ ch = max(y2, y2g) - min(y1, y1g)
|
|
|
+ c2 = cw ** 2 + ch ** 2
|
|
|
+ rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
|
|
|
+
|
|
|
+ ciou = iou - (rho2 / c2)
|
|
|
+ return ciou
|
|
|
+
|
|
|
+
|
|
|
+def detect_watermark(dets, watermark_boxes, threshold=0.5):
|
|
|
+ for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
|
|
|
+ for wm_box in watermark_boxes:
|
|
|
+ wm_box_coords = wm_box[:4]
|
|
|
+ wm_cls = wm_box[4]
|
|
|
+ if cls == wm_cls:
|
|
|
+ ciou = compute_ciou(box, wm_box_coords)
|
|
|
+ if ciou > threshold:
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+
|
|
|
+
|
|
|
+def predict_and_detect(image_path, model_file, watermark_txt, input_shape) -> bool:
|
|
|
+ """
|
|
|
+ 使用指定onnx文件进行预测并进行黑盒水印检测
|
|
|
+ :param image_path: 输入图像路径
|
|
|
+ :param model_file: 模型文件路径
|
|
|
+ :param watermark_txt: 水印标签文件路径
|
|
|
+ :param input_shape: 模型输入图像大小,tuple
|
|
|
+ :return:
|
|
|
+ """
|
|
|
+ origin_img = cv2.imread(image_path)
|
|
|
+ img, ratio = preproc(origin_img, input_shape)
|
|
|
+ height, width, channels = origin_img.shape
|
|
|
+ watermark_boxes = parse_qrcode_label_file.load_watermark_info(watermark_txt, width, height)
|
|
|
+
|
|
|
+ session = onnxruntime.InferenceSession(model_file)
|
|
|
+
|
|
|
+ ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
|
|
+ output = session.run(None, ort_inputs)
|
|
|
+ predictions = demo_postprocess(output[0], input_shape)[0]
|
|
|
+
|
|
|
+ boxes = predictions[:, :4]
|
|
|
+ scores = predictions[:, 4:5] * predictions[:, 5:]
|
|
|
+
|
|
|
+ boxes_xyxy = np.ones_like(boxes)
|
|
|
+ boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
|
|
+ boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
|
|
+ boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
|
|
+ boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
|
|
+ boxes_xyxy /= ratio
|
|
|
+ dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
|
|
+ if dets is not None:
|
|
|
+ detect_result = detect_watermark(dets, watermark_boxes.get(image_path, []))
|
|
|
+ return detect_result
|
|
|
+ else:
|
|
|
+ return False
|