|
@@ -106,7 +106,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|
|
if isinstance(module, nn.Conv2d):
|
|
|
conv_list.append(module)
|
|
|
conv_list = conv_list[0:2]
|
|
|
- encoder = ModelEncoder(layers=conv_list, secret=opt.secret, key_path=opt.key_path, device=device)
|
|
|
+ encoder = ModelEncoder(layers=conv_list, secret=opt.secret, key_path=os.path.join(opt.key_path, 'key.pt'), device=device)
|
|
|
|
|
|
# Freeze
|
|
|
freeze = [] # parameter names to freeze (full or partial)
|
|
@@ -281,7 +281,7 @@ def train(hyp, opt, device, tb_writer=None):
|
|
|
if rank != -1:
|
|
|
dataloader.sampler.set_epoch(epoch)
|
|
|
pbar = enumerate(dataloader)
|
|
|
- logger.info(('\n' + '%10s' * 9) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size', 'embed_loss'))
|
|
|
+ logger.info(('\n' + '%12s' * 9) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size', 'embed_loss'))
|
|
|
if rank in [-1, 0]:
|
|
|
pbar = tqdm(pbar, total=nb) # progress bar
|
|
|
optimizer.zero_grad()
|
|
@@ -535,6 +535,9 @@ if __name__ == '__main__':
|
|
|
opt.name = 'evolve' if opt.evolve else opt.name
|
|
|
opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
|
|
|
|
|
|
+ # watermark save dictionary
|
|
|
+ opt.key_path = increment_path(Path(opt.project) / opt.name, exist_ok=True)
|
|
|
+
|
|
|
# DDP mode
|
|
|
opt.total_batch_size = opt.batch_size
|
|
|
device = select_device(opt.device, batch_size=opt.batch_size)
|