|
@@ -384,3 +384,24 @@ class Classify(nn.Module):
|
|
def forward(self, x):
|
|
def forward(self, x):
|
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
|
z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
|
|
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
|
return self.flat(self.conv(z)) # flatten to x(b,c2)
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+import warnings
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+class SPPF(nn.Module):
|
|
|
|
+ # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
|
|
|
|
+ def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
|
|
|
+ super().__init__()
|
|
|
|
+ c_ = c1 // 2 # hidden channels
|
|
|
|
+ self.cv1 = Conv(c1, c_, 1, 1)
|
|
|
|
+ self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
|
|
|
+ self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
|
|
|
+
|
|
|
|
+ def forward(self, x):
|
|
|
|
+ x = self.cv1(x)
|
|
|
|
+ with warnings.catch_warnings():
|
|
|
|
+ warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
|
|
|
+ y1 = self.m(x)
|
|
|
|
+ y2 = self.m(y1)
|
|
|
|
+ return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
|