123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- # YOLOv5 common modules
- import math
- from copy import copy
- from pathlib import Path
- import numpy as np
- import pandas as pd
- import requests
- import torch
- import torch.nn as nn
- from PIL import Image
- from torch.cuda import amp
- from utils.datasets import letterbox
- from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh
- from utils.plots import color_list, plot_one_box
- from utils.torch_utils import time_synchronized
- def autopad(k, p=None): # kernel, padding
- # Pad to 'same'
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- def DWConv(c1, c2, k=1, s=1, act=True):
- # Depthwise convolution
- return Conv(c1, c2, k, s, g=math.gcd(c1, c2), act=act)
- class Conv(nn.Module):
- # Standard convolution
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super(Conv, self).__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
- def forward(self, x):
- return self.act(self.bn(self.conv(x)))
- def fuseforward(self, x):
- return self.act(self.conv(x))
- class TransformerLayer(nn.Module):
- # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
- def __init__(self, c, num_heads):
- super().__init__()
- self.q = nn.Linear(c, c, bias=False)
- self.k = nn.Linear(c, c, bias=False)
- self.v = nn.Linear(c, c, bias=False)
- self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
- self.fc1 = nn.Linear(c, c, bias=False)
- self.fc2 = nn.Linear(c, c, bias=False)
- def forward(self, x):
- x = self.ma(self.q(x), self.k(x), self.v(x))[0] + x
- x = self.fc2(self.fc1(x)) + x
- return x
- class TransformerBlock(nn.Module):
- # Vision Transformer https://arxiv.org/abs/2010.11929
- def __init__(self, c1, c2, num_heads, num_layers):
- super().__init__()
- self.conv = None
- if c1 != c2:
- self.conv = Conv(c1, c2)
- self.linear = nn.Linear(c2, c2) # learnable position embedding
- self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
- self.c2 = c2
- def forward(self, x):
- if self.conv is not None:
- x = self.conv(x)
- b, _, w, h = x.shape
- p = x.flatten(2)
- p = p.unsqueeze(0)
- p = p.transpose(0, 3)
- p = p.squeeze(3)
- e = self.linear(p)
- x = p + e
- x = self.tr(x)
- x = x.unsqueeze(3)
- x = x.transpose(0, 3)
- x = x.reshape(b, self.c2, w, h)
- return x
- class Bottleneck(nn.Module):
- # Standard bottleneck
- def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
- super(Bottleneck, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_, c2, 3, 1, g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class BottleneckCSP(nn.Module):
- # CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(BottleneckCSP, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
- self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
- self.cv4 = Conv(2 * c_, c2, 1, 1)
- self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
- self.act = nn.LeakyReLU(0.1, inplace=True)
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
- def forward(self, x):
- y1 = self.cv3(self.m(self.cv1(x)))
- y2 = self.cv2(x)
- return self.cv4(self.act(self.bn(torch.cat((y1, y2), dim=1))))
- class C3(nn.Module):
- # CSP Bottleneck with 3 convolutions
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
- super(C3, self).__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # act=FReLU(c2)
- self.m = nn.Sequential(*[Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)])
- # self.m = nn.Sequential(*[CrossConv(c_, c_, 3, 1, g, 1.0, shortcut) for _ in range(n)])
- def forward(self, x):
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
- class C3TR(C3):
- # C3 module with TransformerBlock()
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e)
- self.m = TransformerBlock(c_, c_, 4, n)
- class SPP(nn.Module):
- # Spatial pyramid pooling layer used in YOLOv3-SPP
- def __init__(self, c1, c2, k=(5, 9, 13)):
- super(SPP, self).__init__()
- c_ = c1 // 2 # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
- self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
- def forward(self, x):
- x = self.cv1(x)
- return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
- class Focus(nn.Module):
- # Focus wh information into c-space
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
- super(Focus, self).__init__()
- self.conv = Conv(c1 * 4, c2, k, s, p, g, act)
- # self.contract = Contract(gain=2)
- def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
- return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
- # return self.conv(self.contract(x))
- class Contract(nn.Module):
- # Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
- def __init__(self, gain=2):
- super().__init__()
- self.gain = gain
- def forward(self, x):
- N, C, H, W = x.size() # assert (H / s == 0) and (W / s == 0), 'Indivisible gain'
- s = self.gain
- x = x.view(N, C, H // s, s, W // s, s) # x(1,64,40,2,40,2)
- x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
- return x.view(N, C * s * s, H // s, W // s) # x(1,256,40,40)
- class Expand(nn.Module):
- # Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
- def __init__(self, gain=2):
- super().__init__()
- self.gain = gain
- def forward(self, x):
- N, C, H, W = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
- s = self.gain
- x = x.view(N, s, s, C // s ** 2, H, W) # x(1,2,2,16,80,80)
- x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
- return x.view(N, C // s ** 2, H * s, W * s) # x(1,16,160,160)
- class Concat(nn.Module):
- # Concatenate a list of tensors along dimension
- def __init__(self, dimension=1):
- super(Concat, self).__init__()
- self.d = dimension
- def forward(self, x):
- return torch.cat(x, self.d)
- class NMS(nn.Module):
- # Non-Maximum Suppression (NMS) module
- conf = 0.25 # confidence threshold
- iou = 0.45 # IoU threshold
- classes = None # (optional list) filter by class
- def __init__(self):
- super(NMS, self).__init__()
- def forward(self, x):
- return non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
- class autoShape(nn.Module):
- # input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
- conf = 0.25 # NMS confidence threshold
- iou = 0.45 # NMS IoU threshold
- classes = None # (optional list) filter by class
- def __init__(self, model):
- super(autoShape, self).__init__()
- self.model = model.eval()
- def autoshape(self):
- print('autoShape already enabled, skipping... ') # model already converted to model.autoshape()
- return self
- @torch.no_grad()
- def forward(self, imgs, size=640, augment=False, profile=False):
- # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
- # filename: imgs = 'data/samples/zidane.jpg'
- # URI: = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
- # OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
- # PIL: = Image.open('image.jpg') # HWC x(640,1280,3)
- # numpy: = np.zeros((640,1280,3)) # HWC
- # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
- # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
- t = [time_synchronized()]
- p = next(self.model.parameters()) # for device and type
- if isinstance(imgs, torch.Tensor): # torch
- with amp.autocast(enabled=p.device.type != 'cpu'):
- return self.model(imgs.to(p.device).type_as(p), augment, profile) # inference
- # Pre-process
- n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs]) # number of images, list of images
- shape0, shape1, files = [], [], [] # image and inference shapes, filenames
- for i, im in enumerate(imgs):
- f = f'image{i}' # filename
- if isinstance(im, str): # filename or uri
- im, f = np.asarray(Image.open(requests.get(im, stream=True).raw if im.startswith('http') else im)), im
- elif isinstance(im, Image.Image): # PIL Image
- im, f = np.asarray(im), getattr(im, 'filename', f) or f
- files.append(Path(f).with_suffix('.jpg').name)
- if im.shape[0] < 5: # image in CHW
- im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
- im = im[:, :, :3] if im.ndim == 3 else np.tile(im[:, :, None], 3) # enforce 3ch input
- s = im.shape[:2] # HWC
- shape0.append(s) # image shape
- g = (size / max(s)) # gain
- shape1.append([y * g for y in s])
- imgs[i] = im # update
- shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)] # inference shape
- x = [letterbox(im, new_shape=shape1, auto=False)[0] for im in imgs] # pad
- x = np.stack(x, 0) if n > 1 else x[0][None] # stack
- x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW
- x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32
- t.append(time_synchronized())
- with amp.autocast(enabled=p.device.type != 'cpu'):
- # Inference
- y = self.model(x, augment, profile)[0] # forward
- t.append(time_synchronized())
- # Post-process
- y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes) # NMS
- for i in range(n):
- scale_coords(shape1, y[i][:, :4], shape0[i])
- t.append(time_synchronized())
- return Detections(imgs, y, files, t, self.names, x.shape)
- class Detections:
- # detections class for YOLOv5 inference results
- def __init__(self, imgs, pred, files, times=None, names=None, shape=None):
- super(Detections, self).__init__()
- d = pred[0].device # device
- gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations
- self.imgs = imgs # list of images as numpy arrays
- self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
- self.names = names # class names
- self.files = files # image filenames
- self.xyxy = pred # xyxy pixels
- self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
- self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
- self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
- self.n = len(self.pred) # number of images (batch size)
- self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms)
- self.s = shape # inference BCHW shape
- def display(self, pprint=False, show=False, save=False, render=False, save_dir=''):
- colors = color_list()
- for i, (img, pred) in enumerate(zip(self.imgs, self.pred)):
- str = f'image {i + 1}/{len(self.pred)}: {img.shape[0]}x{img.shape[1]} '
- if pred is not None:
- for c in pred[:, -1].unique():
- n = (pred[:, -1] == c).sum() # detections per class
- str += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
- if show or save or render:
- for *box, conf, cls in pred: # xyxy, confidence, class
- label = f'{self.names[int(cls)]} {conf:.2f}'
- plot_one_box(box, img, label=label, color=colors[int(cls) % 10])
- img = Image.fromarray(img.astype(np.uint8)) if isinstance(img, np.ndarray) else img # from np
- if pprint:
- print(str.rstrip(', '))
- if show:
- img.show(self.files[i]) # show
- if save:
- f = self.files[i]
- img.save(Path(save_dir) / f) # save
- print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n')
- if render:
- self.imgs[i] = np.asarray(img)
- def print(self):
- self.display(pprint=True) # print results
- print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t)
- def show(self):
- self.display(show=True) # show results
- def save(self, save_dir='runs/hub/exp'):
- save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp') # increment save_dir
- Path(save_dir).mkdir(parents=True, exist_ok=True)
- self.display(save=True, save_dir=save_dir) # save results
- def render(self):
- self.display(render=True) # render results
- return self.imgs
- def pandas(self):
- # return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
- new = copy(self) # return copy
- ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
- cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
- for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
- a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
- setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
- return new
- def tolist(self):
- # return a list of Detections objects, i.e. 'for result in results.tolist():'
- x = [Detections([self.imgs[i]], [self.pred[i]], self.names, self.s) for i in range(self.n)]
- for d in x:
- for k in ['imgs', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
- setattr(d, k, getattr(d, k)[0]) # pop out of list
- return x
- def __len__(self):
- return self.n
- class Classify(nn.Module):
- # Classification head, i.e. x(b,c1,20,20) to x(b,c2)
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
- super(Classify, self).__init__()
- self.aap = nn.AdaptiveAvgPool2d(1) # to x(b,c1,1,1)
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g) # to x(b,c2,1,1)
- self.flat = nn.Flatten()
- def forward(self, x):
- z = torch.cat([self.aap(y) for y in (x if isinstance(x, list) else [x])], 1) # cat if list
- return self.flat(self.conv(z)) # flatten to x(b,c2)
|