原始yolov5源码,同时集成黑盒白盒水印

liyan 7a665c1007 初始化项目 5 miesięcy temu
.github 7a665c1007 初始化项目 5 miesięcy temu
models 7a665c1007 初始化项目 5 miesięcy temu
utils 7a665c1007 初始化项目 5 miesięcy temu
weights 7a665c1007 初始化项目 5 miesięcy temu
.dockerignore 7a665c1007 初始化项目 5 miesięcy temu
.gitattributes 7a665c1007 初始化项目 5 miesięcy temu
.gitignore 7a665c1007 初始化项目 5 miesięcy temu
Dockerfile 7a665c1007 初始化项目 5 miesięcy temu
LICENSE 7a665c1007 初始化项目 5 miesięcy temu
README.md 7a665c1007 初始化项目 5 miesięcy temu
detect.py 7a665c1007 初始化项目 5 miesięcy temu
hubconf.py 7a665c1007 初始化项目 5 miesięcy temu
requirements.txt 7a665c1007 初始化项目 5 miesięcy temu
test.py 7a665c1007 初始化项目 5 miesięcy temu
train.py 7a665c1007 初始化项目 5 miesięcy temu
tutorial.ipynb 7a665c1007 初始化项目 5 miesięcy temu

README.md

&nbsp

CI CPU testing

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice. Use at your own risk.

YOLOv5-P5 640 Figure (click to expand)

Figure Notes (click to expand)
  • GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS.
  • EfficientDet data from google/automl at batch size 8.
  • Reproduce by python test.py --task study --data coco.yaml --iou 0.7 --weights yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt

  • April 11, 2021: v5.0 release: YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations.

  • January 5, 2021: v4.0 release: nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration.

  • August 13, 2020: v3.0 release: nn.Hardswish() activations, data autodownload, native AMP.

  • July 23, 2020: v2.0 release: improved model definition, training and mAP.

  • Pretrained Checkpoints

    Table Notes (click to expand)
    • APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
    • AP values are for single-model single-scale unless otherwise noted. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
    • SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes FP16 inference, postprocessing and NMS. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
    • All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
    • Test Time Augmentation (TTA) includes reflection and scale augmentation. Reproduce TTA by python test.py --data coco.yaml --img 1536 --iou 0.7 --augment

    Requirements

    Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

    $ pip install -r requirements.txt
    

    Tutorials

    Environments

    YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

    Inference

    detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

    $ python detect.py --source 0  # webcam
                                file.jpg  # image 
                                file.mp4  # video
                                path/  # directory
                                path/*.jpg  # glob
                                'https://youtu.be/NUsoVlDFqZg'  # YouTube video
                                'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
    

    To run inference on example images in data/images:

    $ python detect.py --source data/images --weights yolov5s.pt --conf 0.25
    
    Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
    YOLOv5 v4.0-96-g83dc1b4 torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16160.5MB)
    
    Fusing layers... 
    Model Summary: 224 layers, 7266973 parameters, 0 gradients, 17.0 GFLOPS
    image 1/2 /content/yolov5/data/images/bus.jpg: 640x480 4 persons, 1 bus, Done. (0.010s)
    image 2/2 /content/yolov5/data/images/zidane.jpg: 384x640 2 persons, 1 tie, Done. (0.011s)
    Results saved to runs/detect/exp2
    Done. (0.103s)
    

    PyTorch Hub

    To run batched inference with YOLOv5 and PyTorch Hub:

    import torch
    
    # Model
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s')
    
    # Images
    dir = 'https://github.com/ultralytics/yolov5/raw/master/data/images/'
    imgs = [dir + f for f in ('zidane.jpg', 'bus.jpg')]  # batch of images
    
    # Inference
    results = model(imgs)
    results.print()  # or .show(), .save()
    

    Training

    Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

    $ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                             yolov5m                                40
                                             yolov5l                                24
                                             yolov5x                                16
    

    Citation

    DOI

    About Us

    Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

    • Cloud-based AI systems operating on hundreds of HD video streams in realtime.
    • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
    • Custom data training, hyperparameter evolution, and model exportation to any destination.

    For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

    Contact

    Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.

    Model size
    (pixels)
    mAPval
    0.5:0.95
    mAPtest
    0.5:0.95
    mAPval
    0.5
    Speed
    V100 (ms)
    params
    (M)
    FLOPS
    640 (B)
    YOLOv5s 640 36.7 36.7 55.4 2.0 7.3 17.0
    YOLOv5m 640 44.5 44.5 63.3 2.7 21.4 51.3
    YOLOv5l 640 48.2 48.2 66.9 3.8 47.0 115.4
    YOLOv5x 640 50.4 50.4 68.8 6.1 87.7 218.8
    YOLOv5s6 1280 43.3 43.3 61.9 4.3 12.7 17.4
    YOLOv5m6 1280 50.5 50.5 68.7 8.4 35.9 52.4
    YOLOv5l6 1280 53.4 53.4 71.1 12.3 77.2 117.7
    YOLOv5x6 1280 54.4 54.4 72.0 22.4 141.8 222.9
    YOLOv5x6 TTA 1280 55.0 55.0 72.0 70.8 - -