123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- """Exports a YOLOv5 *.pt model to ONNX and TorchScript formats
- Usage:
- $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1
- """
- import argparse
- import sys
- import time
- sys.path.append('./') # to run '$ python *.py' files in subdirectories
- import torch
- import torch.nn as nn
- import models
- from models.experimental import attempt_load
- from utils.activations import Hardswish, SiLU
- from utils.general import set_logging, check_img_size
- from utils.torch_utils import select_device
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path') # from yolov5/models/
- parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
- parser.add_argument('--batch-size', type=int, default=1, help='batch size')
- parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
- parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
- parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- opt = parser.parse_args()
- opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
- print(opt)
- set_logging()
- t = time.time()
- # Load PyTorch model
- device = select_device(opt.device)
- model = attempt_load(opt.weights, map_location=device) # load FP32 model
- labels = model.names
- # Checks
- gs = int(max(model.stride)) # grid size (max stride)
- opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
- # Input
- img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
- # Update model
- for k, m in model.named_modules():
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- if isinstance(m, models.common.Conv): # assign export-friendly activations
- if isinstance(m.act, nn.Hardswish):
- m.act = Hardswish()
- elif isinstance(m.act, nn.SiLU):
- m.act = SiLU()
- # elif isinstance(m, models.yolo.Detect):
- # m.forward = m.forward_export # assign forward (optional)
- model.model[-1].export = not opt.grid # set Detect() layer grid export
- y = model(img) # dry run
- # TorchScript export
- try:
- print('\nStarting TorchScript export with torch %s...' % torch.__version__)
- f = opt.weights.replace('.pt', '.torchscript.pt') # filename
- ts = torch.jit.trace(model, img)
- ts.save(f)
- print('TorchScript export success, saved as %s' % f)
- except Exception as e:
- print('TorchScript export failure: %s' % e)
- # ONNX export
- try:
- import onnx
- print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
- f = opt.weights.replace('.pt', '.onnx') # filename
- torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
- output_names=['classes', 'boxes'] if y is None else ['output'],
- dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
- 'output': {0: 'batch', 2: 'y', 3: 'x'}} if opt.dynamic else None)
- # Checks
- onnx_model = onnx.load(f) # load onnx model
- onnx.checker.check_model(onnx_model) # check onnx model
- # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
- print('ONNX export success, saved as %s' % f)
- except Exception as e:
- print('ONNX export failure: %s' % e)
- # CoreML export
- try:
- import coremltools as ct
- print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
- # convert model from torchscript and apply pixel scaling as per detect.py
- model = ct.convert(ts, inputs=[ct.ImageType(name='image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
- f = opt.weights.replace('.pt', '.mlmodel') # filename
- model.save(f)
- print('CoreML export success, saved as %s' % f)
- except Exception as e:
- print('CoreML export failure: %s' % e)
- # Finish
- print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
|