123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800 |
- # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
- """
- Validate a trained YOLOv5 model accuracy on a custom dataset
- Usage:
- $ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
- """
- import argparse
- import json
- import os
- import sys
- from pathlib import Path
- from threading import Thread
- from models.common import Bottleneck
- import numpy as np
- import torch
- from tqdm import tqdm
- import yaml
- from utils.prune_utils import gather_bn_weights, obtain_bn_mask
- FILE = Path(__file__).resolve()
- ROOT = FILE.parents[0] # YOLOv5 root directory
- if str(ROOT) not in sys.path:
- sys.path.append(str(ROOT)) # add ROOT to PATH
- ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
- from models.pruned_common import C3Pruned, SPPFPruned, BottleneckPruned
- from models.common import DetectMultiBackend
- from utils.callbacks import Callbacks
- from utils.datasets import create_dataloader
- from utils.general import (LOGGER, box_iou, check_dataset, check_img_size, check_requirements, check_yaml,
- coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args,
- scale_coords, xywh2xyxy, xyxy2xywh)
- from utils.metrics import ConfusionMatrix, ap_per_class
- from utils.plots import output_to_target, plot_images, plot_val_study
- from utils.torch_utils import select_device, time_sync
- from models.yolo import *
- def save_one_txt(predn, save_conf, shape, file):
- # Save one txt result
- gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh
- for *xyxy, conf, cls in predn.tolist():
- xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
- line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
- with open(file, 'a') as f:
- f.write(('%g ' * len(line)).rstrip() % line + '\n')
- def save_one_json(predn, jdict, path, class_map):
- # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}
- image_id = int(path.stem) if path.stem.isnumeric() else path.stem
- box = xyxy2xywh(predn[:, :4]) # xywh
- box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
- for p, b in zip(predn.tolist(), box.tolist()):
- jdict.append({'image_id': image_id,
- 'category_id': class_map[int(p[5])],
- 'bbox': [round(x, 3) for x in b],
- 'score': round(p[4], 5)})
- def process_batch(detections, labels, iouv):
- """
- Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
- Arguments:
- detections (Array[N, 6]), x1, y1, x2, y2, conf, class
- labels (Array[M, 5]), class, x1, y1, x2, y2
- Returns:
- correct (Array[N, 10]), for 10 IoU levels
- """
- correct = torch.zeros(detections.shape[0], iouv.shape[0], dtype=torch.bool, device=iouv.device)
- iou = box_iou(labels[:, 1:], detections[:, :4])
- x = torch.where((iou >= iouv[0]) & (labels[:, 0:1] == detections[:, 5])) # IoU above threshold and classes match
- if x[0].shape[0]:
- matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy() # [label, detection, iou]
- if x[0].shape[0] > 1:
- matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
- # matches = matches[matches[:, 2].argsort()[::-1]]
- matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
- matches = torch.Tensor(matches).to(iouv.device)
- correct[matches[:, 1].long()] = matches[:, 2:3] >= iouv
- return correct
- @torch.no_grad()
- def run(data,
- weights=None, # model.pt path(s)
- cfg = 'models/yolov5s.yaml',
- percent=0,
- batch_size=32, # batch size
- imgsz=640, # inference size (pixels)
- conf_thres=0.001, # confidence threshold
- iou_thres=0.6, # NMS IoU threshold
- task='val', # train, val, test, speed or study
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- workers=8, # max dataloader workers (per RANK in DDP mode)
- single_cls=False, # treat as single-class dataset
- augment=False, # augmented inference
- verbose=False, # verbose output
- save_txt=False, # save results to *.txt
- save_hybrid=False, # save label+prediction hybrid results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_json=False, # save a COCO-JSON results file
- project=ROOT / 'runs/val', # save to project/name
- name='exp', # save to project/name
- exist_ok=False, # existing project/name ok, do not increment
- half=True, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- model=None,
- dataloader=None,
- save_dir=Path(''),
- plots=True,
- callbacks=Callbacks(),
- compute_loss=None,
- ):
- # Initialize/load model and set device
- training = model is not None
- if training: # called by train.py
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
- half &= device.type != 'cpu' # half precision only supported on CUDA
- model.half() if half else model.float()
- else: # called directly
- device = select_device(device, batch_size=batch_size)
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- # Load model
- model = DetectMultiBackend(weights, device=device, dnn=dnn)
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_img_size(imgsz, s=stride) # check image size
- half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
- if pt or jit:
- model.model.half() if half else model.model.float()
- elif engine:
- batch_size = model.batch_size
- else:
- half = False
- batch_size = 1 # export.py models default to batch-size 1
- device = torch.device('cpu')
- LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
- # Data
- data = check_dataset(data) # check
- # Configure
- model.eval()
- is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
- nc = 1 if single_cls else int(data['nc']) # number of classes
- iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
- niou = iouv.numel()
- # Dataloader
- if not training:
- model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup
- pad = 0.0 if task == 'speed' else 0.5
- task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
- dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
- workers=workers, prefix=colorstr(f'{task}: '))[0]
- seen = 0
- confusion_matrix = ConfusionMatrix(nc=nc)
- names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
- class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
- s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
- dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
- loss = torch.zeros(3, device=device)
- jdict, stats, ap, ap_class = [], [], [], []
- pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
- for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
- t1 = time_sync()
- if pt or jit or engine:
- im = im.to(device, non_blocking=True)
- targets = targets.to(device)
- im = im.half() if half else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- nb, _, height, width = im.shape # batch size, channels, height, width
- t2 = time_sync()
- dt[0] += t2 - t1
- # Inference
- out, train_out = model(im) if training else model(im, augment=augment, val=True) # inference, loss outputs
- dt[1] += time_sync() - t2
- # Loss
- if compute_loss:
- loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
- # NMS
- targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
- lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
- t3 = time_sync()
- out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
- dt[2] += time_sync() - t3
- # Metrics
- for si, pred in enumerate(out):
- labels = targets[targets[:, 0] == si, 1:]
- nl = len(labels)
- tcls = labels[:, 0].tolist() if nl else [] # target class
- path, shape = Path(paths[si]), shapes[si][0]
- seen += 1
- if len(pred) == 0:
- if nl:
- stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
- continue
- # Predictions
- if single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
- # Evaluate
- if nl:
- tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
- scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
- labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
- correct = process_batch(predn, labelsn, iouv)
- if plots:
- confusion_matrix.process_batch(predn, labelsn)
- else:
- correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
- stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
- # Save/log
- if save_txt:
- save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
- if save_json:
- save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
- callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
- # Plot images
- if plots and batch_i < 3:
- f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
- Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
- f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
- Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
- # Compute metrics
- stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
- if len(stats) and stats[0].any():
- tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
- ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
- mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
- nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
- else:
- nt = torch.zeros(1)
- # Print results
- pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
- LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
- # Print results per class
- if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
- for i, c in enumerate(ap_class):
- LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
- # Print speeds
- t = tuple(x / seen * 1E3 for x in dt) # speeds per image
- if not training:
- shape = (batch_size, 3, imgsz, imgsz)
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
- # Plots
- if plots:
- confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
- callbacks.run('on_val_end')
- # Save JSON
- if save_json and len(jdict):
- w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
- anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
- pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
- LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
- with open(pred_json, 'w') as f:
- json.dump(jdict, f)
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- check_requirements(['pycocotools'])
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- anno = COCO(anno_json) # init annotations api
- pred = anno.loadRes(pred_json) # init predictions api
- eval = COCOeval(anno, pred, 'bbox')
- if is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
- except Exception as e:
- LOGGER.info(f'pycocotools unable to run: {e}')
- # Return results
- model.float() # for training
- if not training:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- maps = np.zeros(nc) + map
- for i, c in enumerate(ap_class):
- maps[c] = ap[i]
- return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
- @torch.no_grad()
- def run_prune(data,
- weights=None, # model.pt path(s)
- cfg = 'models/yolov5s.yaml',
- percent=0,
- batch_size=32, # batch size
- imgsz=640, # inference size (pixels)
- conf_thres=0.001, # confidence threshold
- iou_thres=0.6, # NMS IoU threshold
- task='val', # train, val, test, speed or study
- device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
- workers=8, # max dataloader workers (per RANK in DDP mode)
- single_cls=False, # treat as single-class dataset
- augment=False, # augmented inference
- verbose=False, # verbose output
- save_txt=False, # save results to *.txt
- save_hybrid=False, # save label+prediction hybrid results to *.txt
- save_conf=False, # save confidences in --save-txt labels
- save_json=False, # save a COCO-JSON results file
- project=ROOT / 'runs/val', # save to project/name
- name='exp', # save to project/name
- exist_ok=False, # existing project/name ok, do not increment
- half=True, # use FP16 half-precision inference
- dnn=False, # use OpenCV DNN for ONNX inference
- model=None,
- dataloader=None,
- save_dir=Path(''),
- plots=True,
- callbacks=Callbacks(),
- compute_loss=None,
- ):
- # Initialize/load model and set device
- training = model is not None
- if training: # called by train.py
- device, pt, jit, engine = next(model.parameters()).device, True, False, False # get model device, PyTorch model
- half &= device.type != 'cpu' # half precision only supported on CUDA
- model.half() if half else model.float()
- else: # called directly
- device = select_device(device, batch_size=batch_size)
- # Directories
- save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
- (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
- # Load model
- model = DetectMultiBackend(weights, device=device, dnn=dnn)
- stride, pt, jit, engine = model.stride, model.pt, model.jit, model.engine
- imgsz = check_img_size(imgsz, s=stride) # check image size
- # half &= (pt or jit or engine) and device.type != 'cpu' # half precision only supported by PyTorch on CUDA
- # if pt or jit:
- # model.model.half() if half else model.model.float()
- # elif engine:
- # batch_size = model.batch_size
- # else:
- # half = False
- # batch_size = 1 # export.py models default to batch-size 1
- # device = torch.device('cpu')
- # LOGGER.info(f'Forcing --batch-size 1 square inference shape(1,3,{imgsz},{imgsz}) for non-PyTorch backends')
- # Data
- data = check_dataset(data) # check
- # Configure
- model = model.model
- # print(model)
- model.eval()
- # =========================================== prune model ====================================#
- # print("model.module_list:",model.named_children())
- model_list = {}
- ignore_bn_list = []
- for i, layer in model.named_modules():
- # if isinstance(layer, nn.Conv2d):
- # print("@Conv :",i,layer)
- if isinstance(layer, Bottleneck):
- if layer.add:
- ignore_bn_list.append(i.rsplit(".",2)[0]+".cv1.bn")
- ignore_bn_list.append(i + '.cv1.bn')
- ignore_bn_list.append(i + '.cv2.bn')
- if isinstance(layer, torch.nn.BatchNorm2d):
- if i not in ignore_bn_list:
- model_list[i] = layer
- # print(i, layer)
- # bnw = layer.state_dict()['weight']
- model_list = {k:v for k,v in model_list.items() if k not in ignore_bn_list}
- # print("prune module :",model_list.keys())
- prune_conv_list = [layer.replace("bn", "conv") for layer in model_list.keys()]
- # print(prune_conv_list)
- bn_weights = gather_bn_weights(model_list)
- sorted_bn = torch.sort(bn_weights)[0]
- # print("model_list:",model_list)
- # print("bn_weights:",bn_weights)
- # 避免剪掉所有channel的最高阈值(每个BN层的gamma的最大值的最小值即为阈值上限)
- highest_thre = []
- for bnlayer in model_list.values():
- highest_thre.append(bnlayer.weight.data.abs().max().item())
- # print("highest_thre:",highest_thre)
- highest_thre = min(highest_thre)
- # 找到highest_thre对应的下标对应的百分比
- percent_limit = (sorted_bn == highest_thre).nonzero()[0, 0].item() / len(bn_weights)
- print(f'Suggested Gamma threshold should be less than {highest_thre:.4f}.')
- print(f'The corresponding prune ratio is {percent_limit:.3f}.')
- # assert opt.percent < percent_limit, f"Prune ratio should less than {percent_limit}, otherwise it may cause error!!!"
- # model_copy = deepcopy(model)
- thre_index = int(len(sorted_bn) * opt.percent)
- thre = sorted_bn[thre_index]
- print(f'Gamma value that less than {thre:.4f} are set to zero!')
- print("=" * 94)
- print(f"|\t{'layer name':<25}{'|':<10}{'origin channels':<20}{'|':<10}{'remaining channels':<20}|")
- remain_num = 0
- modelstate = model.state_dict()
- # ============================== save pruned model config yaml =================================#
- pruned_yaml = {}
- nc = model.model[-1].nc
- with open(cfg, encoding='ascii', errors='ignore') as f:
- model_yamls = yaml.safe_load(f) # model dict
- # # Define model
- pruned_yaml["nc"] = model.model[-1].nc
- pruned_yaml["depth_multiple"] = model_yamls["depth_multiple"]
- pruned_yaml["width_multiple"] = model_yamls["width_multiple"]
- pruned_yaml["anchors"] = model_yamls["anchors"]
- anchors = model_yamls["anchors"]
- pruned_yaml["backbone"] = [
- [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
- [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
- [-1, 3, C3Pruned, [128]],
- [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
- [-1, 6, C3Pruned, [256]],
- [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
- [-1, 9, C3Pruned, [512]],
- [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
- [-1, 3, C3Pruned, [1024]],
- [-1, 1, SPPFPruned, [1024, 5]], # 9
- ]
- pruned_yaml["head"] = [
- [-1, 1, Conv, [512, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 6], 1, Concat, [1]], # cat backbone P4
- [-1, 3, C3Pruned, [512, False]], # 13
- [-1, 1, Conv, [256, 1, 1]],
- [-1, 1, nn.Upsample, [None, 2, 'nearest']],
- [[-1, 4], 1, Concat, [1]], # cat backbone P3
- [-1, 3, C3Pruned, [256, False]], # 17 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]],
- [[-1, 14], 1, Concat, [1]], # cat head P4
- [-1, 3, C3Pruned, [512, False]], # 20 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]],
- [[-1, 10], 1, Concat, [1]], # cat head P5
- [-1, 3, C3Pruned, [1024, False]], # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
- ]
- # ============================================================================== #
- maskbndict = {}
-
- for bnname, bnlayer in model.named_modules():
- if isinstance(bnlayer, nn.BatchNorm2d):
- bn_module = bnlayer
- mask = obtain_bn_mask(bn_module, thre) # 获得剪枝mask
- if bnname in ignore_bn_list:
- mask = torch.ones(bnlayer.weight.data.size()).cuda()
- maskbndict[bnname] = mask
- # print("mask:",mask)
- remain_num += int(mask.sum())
- bn_module.weight.data.mul_(mask)
- bn_module.bias.data.mul_(mask)
- # print("bn_module:", bn_module.bias)
- print(f"|\t{bnname:<25}{'|':<10}{bn_module.weight.data.size()[0]:<20}{'|':<10}{int(mask.sum()):<20}|")
- assert int(mask.sum()) > 0, "Number of remaining channels must greater than 0! please set lower prune percent."
- print("=" * 94)
- # print(maskbndict.keys())
- pruned_model = ModelPruned(maskbndict=maskbndict, cfg=pruned_yaml, ch=3).cuda()
- # Compatibility updates
- for m in pruned_model.modules():
- if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]:
- m.inplace = True # pytorch 1.7.0 compatibility
- elif type(m) is Conv:
- m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
- from_to_map = pruned_model.from_to_map
- pruned_model_state = pruned_model.state_dict()
- assert pruned_model_state.keys() == modelstate.keys()
- # ======================================================================================= #
- changed_state = []
- for ((layername, layer),(pruned_layername, pruned_layer)) in zip(model.named_modules(), pruned_model.named_modules()):
- assert layername == pruned_layername
- if isinstance(layer, nn.Conv2d) and not layername.startswith("model.24"):
- convname = layername[:-4]+"bn"
- if convname in from_to_map.keys():
- former = from_to_map[convname]
- if isinstance(former, str):
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
- w = layer.weight.data[:, in_idx, :, :].clone()
-
- if len(w.shape) ==3: # remain only 1 channel.
- w = w.unsqueeze(1)
- w = w[out_idx, :, :, :].clone()
-
- pruned_layer.weight.data = w.clone()
- changed_state.append(layername + ".weight")
- if isinstance(former, list):
- orignin = [modelstate[i+".weight"].shape[0] for i in former]
- formerin = []
- for it in range(len(former)):
- name = former[it]
- tmp = [i for i in range(maskbndict[name].shape[0]) if maskbndict[name][i] == 1]
- if it > 0:
- tmp = [k + sum(orignin[:it]) for k in tmp]
- formerin.extend(tmp)
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- w = layer.weight.data[out_idx, :, :, :].clone()
- pruned_layer.weight.data = w[:,formerin, :, :].clone()
- changed_state.append(layername + ".weight")
- else:
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername[:-4] + "bn"].cpu().numpy())))
- w = layer.weight.data[out_idx, :, :, :].clone()
- assert len(w.shape) == 4
- pruned_layer.weight.data = w.clone()
- changed_state.append(layername + ".weight")
- if isinstance(layer,nn.BatchNorm2d):
- out_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[layername].cpu().numpy())))
- pruned_layer.weight.data = layer.weight.data[out_idx].clone()
- pruned_layer.bias.data = layer.bias.data[out_idx].clone()
- pruned_layer.running_mean = layer.running_mean[out_idx].clone()
- pruned_layer.running_var = layer.running_var[out_idx].clone()
- changed_state.append(layername + ".weight")
- changed_state.append(layername + ".bias")
- changed_state.append(layername + ".running_mean")
- changed_state.append(layername + ".running_var")
- changed_state.append(layername + ".num_batches_tracked")
- if isinstance(layer, nn.Conv2d) and layername.startswith("model.24"):
- former = from_to_map[layername]
- in_idx = np.squeeze(np.argwhere(np.asarray(maskbndict[former].cpu().numpy())))
- pruned_layer.weight.data = layer.weight.data[:, in_idx, :, :]
- pruned_layer.bias.data = layer.bias.data
- changed_state.append(layername + ".weight")
- changed_state.append(layername + ".bias")
- missing = [i for i in pruned_model_state.keys() if i not in changed_state]
- pruned_model.eval()
- pruned_model.names = model.names
- # =============================================================================================== #
- torch.save({"model": model}, "original_model.pt")
- model = pruned_model
- torch.save({"model":model}, "pruned_model.pt")
- model.cuda().eval()
- is_coco = isinstance(data.get('val'), str) and data['val'].endswith('coco/val2017.txt') # COCO dataset
- nc = 1 if single_cls else int(data['nc']) # number of classes
- iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95
- niou = iouv.numel()
- # Dataloader
- if not training:
- if device.type != 'cpu':
- model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
- # model.warmup(imgsz=(1, 3, imgsz, imgsz), half=half) # warmup
- pad = 0.0 if task == 'speed' else 0.5
- task = task if task in ('train', 'val', 'test') else 'val' # path to train/val/test images
- dataloader = create_dataloader(data[task], imgsz, batch_size, stride, single_cls, pad=pad, rect=pt,
- workers=workers, prefix=colorstr(f'{task}: '))[0]
- seen = 0
- confusion_matrix = ConfusionMatrix(nc=nc)
- names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
- class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
- s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
- dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
- loss = torch.zeros(3, device=device)
- jdict, stats, ap, ap_class = [], [], [], []
- pbar = tqdm(dataloader, desc=s, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') # progress bar
- for batch_i, (im, targets, paths, shapes) in enumerate(pbar):
- t1 = time_sync()
- if pt or jit or engine:
- im = im.to(device, non_blocking=True)
- targets = targets.to(device)
- im = im.half() if half else im.float() # uint8 to fp16/32
- im /= 255 # 0 - 255 to 0.0 - 1.0
- nb, _, height, width = im.shape # batch size, channels, height, width
- t2 = time_sync()
- dt[0] += t2 - t1
- # Inference
- out, train_out = model(im) if training else model(im, augment=augment) # inference, loss outputs
- dt[1] += time_sync() - t2
- # Loss
- if compute_loss:
- loss += compute_loss([x.float() for x in train_out], targets)[1] # box, obj, cls
- # NMS
- targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
- lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
- t3 = time_sync()
- out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls)
- dt[2] += time_sync() - t3
- # Metrics
- for si, pred in enumerate(out):
- labels = targets[targets[:, 0] == si, 1:]
- nl = len(labels)
- tcls = labels[:, 0].tolist() if nl else [] # target class
- path, shape = Path(paths[si]), shapes[si][0]
- seen += 1
- if len(pred) == 0:
- if nl:
- stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
- continue
- # Predictions
- if single_cls:
- pred[:, 5] = 0
- predn = pred.clone()
- scale_coords(im[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred
- # Evaluate
- if nl:
- tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
- scale_coords(im[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels
- labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
- correct = process_batch(predn, labelsn, iouv)
- if plots:
- confusion_matrix.process_batch(predn, labelsn)
- else:
- correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
- stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls)
- # Save/log
- if save_txt:
- save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt'))
- if save_json:
- save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary
- callbacks.run('on_val_image_end', pred, predn, path, names, im[si])
- # Plot images
- if plots and batch_i < 3:
- f = save_dir / f'val_batch{batch_i}_labels.jpg' # labels
- Thread(target=plot_images, args=(im, targets, paths, f, names), daemon=True).start()
- f = save_dir / f'val_batch{batch_i}_pred.jpg' # predictions
- Thread(target=plot_images, args=(im, output_to_target(out), paths, f, names), daemon=True).start()
- # Compute metrics
- stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
- if len(stats) and stats[0].any():
- tp, fp, p, r, f1, ap, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names)
- ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
- mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
- nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
- else:
- nt = torch.zeros(1)
- # Print results
- pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format
- LOGGER.info(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
- # Print results per class
- if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
- for i, c in enumerate(ap_class):
- LOGGER.info(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
- # Print speeds
- t = tuple(x / seen * 1E3 for x in dt) # speeds per image
- if not training:
- shape = (batch_size, 3, imgsz, imgsz)
- LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t)
- # Plots
- if plots:
- confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
- callbacks.run('on_val_end')
- # Save JSON
- if save_json and len(jdict):
- w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
- anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json
- pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
- LOGGER.info(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
- with open(pred_json, 'w') as f:
- json.dump(jdict, f)
- try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
- check_requirements(['pycocotools'])
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- anno = COCO(anno_json) # init annotations api
- pred = anno.loadRes(pred_json) # init predictions api
- eval = COCOeval(anno, pred, 'bbox')
- if is_coco:
- eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
- eval.evaluate()
- eval.accumulate()
- eval.summarize()
- map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
- except Exception as e:
- LOGGER.info(f'pycocotools unable to run: {e}')
- # Return results
- model.float() # for training
- if not training:
- s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
- LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
- maps = np.zeros(nc) + map
- for i, c in enumerate(ap_class):
- maps[c] = ap[i]
- return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
- def parse_opt():
- parser = argparse.ArgumentParser()
- parser.add_argument('--data', type=str, default=ROOT / 'data/VOC.yaml', help='dataset.yaml path')
- parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'VOC2007_wm/train/exp5/weights/best.pt', help='model.pt path(s)')
- parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
- parser.add_argument('--percent', type=float, default=0.15, help='prune percentage')
- parser.add_argument('--batch-size', type=int, default=32, help='batch size')
- parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=512, help='inference size (pixels)')
- parser.add_argument('--conf-thres', type=float, default=0.001, help='confidence threshold')
- parser.add_argument('--iou-thres', type=float, default=0.6, help='NMS IoU threshold')
- parser.add_argument('--task', default='val', help='train, val, test, speed or study')
- parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
- parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
- parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
- parser.add_argument('--augment', action='store_true', help='augmented inference')
- parser.add_argument('--verbose', action='store_true', help='report mAP by class')
- parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
- parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
- parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
- parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file')
- parser.add_argument('--project', default=ROOT / 'VOC2007_wm/prune', help='save to project/name')
- parser.add_argument('--name', default='exp', help='save to project/name')
- parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
- parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
- parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
- opt = parser.parse_args()
- opt.data = check_yaml(opt.data) # check YAML
- opt.save_json |= opt.data.endswith('coco.yaml')
- opt.save_txt |= opt.save_hybrid
- print_args(FILE.stem, opt)
- return opt
- def main(opt):
- # check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
- if opt.task in ('train', 'val', 'test'): # run normally
- if opt.conf_thres > 0.001: # https://github.com/ultralytics/yolov5/issues/1466
- LOGGER.info(f'WARNING: confidence threshold {opt.conf_thres} >> 0.001 will produce invalid mAP values.')
- LOGGER.info(f'test before prune ... ')
- run(**vars(opt))
- LOGGER.info('='*100)
- LOGGER.info('Test after prune ... ')
- run_prune(**vars(opt))
- else:
- weights = opt.weights if isinstance(opt.weights, list) else [opt.weights]
- opt.half = True # FP16 for fastest results
- if opt.task == 'speed': # speed benchmarks
- # python val.py --task speed --data coco.yaml --batch 1 --weights yolov5n.pt yolov5s.pt...
- opt.conf_thres, opt.iou_thres, opt.save_json = 0.25, 0.45, False
- for opt.weights in weights:
- run(**vars(opt), plots=False)
- elif opt.task == 'study': # speed vs mAP benchmarks
- # python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n.pt yolov5s.pt...
- for opt.weights in weights:
- f = f'study_{Path(opt.data).stem}_{Path(opt.weights).stem}.txt' # filename to save to
- x, y = list(range(256, 1536 + 128, 128)), [] # x axis (image sizes), y axis
- for opt.imgsz in x: # img-size
- LOGGER.info(f'\nRunning {f} --imgsz {opt.imgsz}...')
- r, _, t = run(**vars(opt), plots=False)
- y.append(r + t) # results and times
- np.savetxt(f, y, fmt='%10.4g') # save
- os.system('zip -r study.zip study_*.txt')
- plot_val_study(x=x) # plot
- if __name__ == "__main__":
- opt = parse_opt()
- main(opt)
|