|
@@ -0,0 +1,124 @@
|
|
|
+import os
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+from keras.callbacks import ModelCheckpoint, CSVLogger
|
|
|
+from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
|
|
+from tensorflow.keras.applications import VGG16
|
|
|
+
|
|
|
+
|
|
|
+def load_data(train_dir, val_dir, img_size=(224, 224), batch_size=32):
|
|
|
+ # 使用 ImageDataGenerator 加载图像并进行预处理
|
|
|
+ train_datagen = ImageDataGenerator(
|
|
|
+ rescale=1.0 / 255.0, # 归一化
|
|
|
+ rotation_range=40,
|
|
|
+ width_shift_range=0.2,
|
|
|
+ height_shift_range=0.2,
|
|
|
+ shear_range=0.2,
|
|
|
+ zoom_range=0.2,
|
|
|
+ horizontal_flip=True,
|
|
|
+ fill_mode='nearest'
|
|
|
+ )
|
|
|
+
|
|
|
+ val_datagen = ImageDataGenerator(rescale=1.0 / 255.0)
|
|
|
+
|
|
|
+ train_generator = train_datagen.flow_from_directory(
|
|
|
+ train_dir,
|
|
|
+ target_size=img_size, # VGG16 输入大小
|
|
|
+ batch_size=batch_size,
|
|
|
+ class_mode='categorical' # 多分类任务
|
|
|
+ )
|
|
|
+
|
|
|
+ val_generator = val_datagen.flow_from_directory(
|
|
|
+ val_dir,
|
|
|
+ target_size=img_size,
|
|
|
+ batch_size=batch_size,
|
|
|
+ class_mode='categorical'
|
|
|
+ )
|
|
|
+
|
|
|
+ return train_generator, val_generator
|
|
|
+
|
|
|
+
|
|
|
+def train_model(args, train_generator, val_generator):
|
|
|
+ # Create model
|
|
|
+ model = VGG16(weights=None, include_top=True, input_shape=(224, 224, 3), classes=10)
|
|
|
+
|
|
|
+ # 调整学习率
|
|
|
+ learning_rate = args.lr if args.lr else 1e-2
|
|
|
+
|
|
|
+ # 编译模型
|
|
|
+ model.compile(optimizer=tf.keras.optimizers.Adam(),
|
|
|
+ loss='categorical_crossentropy',
|
|
|
+ metrics=['accuracy'])
|
|
|
+
|
|
|
+ # Define CSVLogger to log training history to a CSV file
|
|
|
+ csv_logger = CSVLogger(os.path.join(args.output_dir, 'training_log.csv'), append=True)
|
|
|
+
|
|
|
+ # Define ModelCheckpoint callback to save weights for each epoch
|
|
|
+ checkpoint_callback = ModelCheckpoint(
|
|
|
+ os.path.join(args.output_dir, 'vgg16_{epoch:03d}.h5'), # Save weights as vgg16_{epoch}.h5
|
|
|
+ save_weights_only=False,
|
|
|
+ save_freq='epoch', # Save after every epoch
|
|
|
+ verbose=1
|
|
|
+ )
|
|
|
+
|
|
|
+ # 训练模型
|
|
|
+ history = model.fit(
|
|
|
+ train_generator,
|
|
|
+ steps_per_epoch=train_generator.samples // train_generator.batch_size,
|
|
|
+ epochs=args.epochs,
|
|
|
+ validation_data=val_generator,
|
|
|
+ validation_steps=val_generator.samples // val_generator.batch_size,
|
|
|
+ callbacks=[csv_logger, checkpoint_callback]
|
|
|
+ )
|
|
|
+
|
|
|
+ return history
|
|
|
+
|
|
|
+
|
|
|
+def get_args_parser(add_help=True):
|
|
|
+ import argparse
|
|
|
+
|
|
|
+ parser = argparse.ArgumentParser(description="PyTorch Classification Training", add_help=add_help)
|
|
|
+
|
|
|
+ parser.add_argument("--data-path", default="dataset/imagenette2-320", type=str, help="dataset path")
|
|
|
+ parser.add_argument("--output-dir", default="checkpoints/alexnet", type=str, help="path to save outputs")
|
|
|
+
|
|
|
+ parser.add_argument("--device", default="cuda", type=str, help="device (Use cuda or cpu Default: cuda)")
|
|
|
+ parser.add_argument(
|
|
|
+ "-b", "--batch-size", default=2, type=int, help="images per gpu, the total batch size is $NGPU x batch_size"
|
|
|
+ )
|
|
|
+ parser.add_argument("--epochs", default=90, type=int, metavar="N", help="number of total epochs to run")
|
|
|
+
|
|
|
+ parser.add_argument("--opt", default="sgd", type=str, help="optimizer")
|
|
|
+ parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
|
|
|
+ parser.add_argument("--momentum", default=0.9, type=float, metavar="M", help="momentum")
|
|
|
+ parser.add_argument("--lr-scheduler", default="steplr", type=str, help="the lr scheduler (default: steplr)")
|
|
|
+ parser.add_argument("--lr-warmup-epochs", default=0, type=int, help="the number of epochs to warmup (default: 0)")
|
|
|
+ parser.add_argument(
|
|
|
+ "--lr-warmup-method", default="constant", type=str, help="the warmup method (default: constant)"
|
|
|
+ )
|
|
|
+ parser.add_argument("--lr-warmup-decay", default=0.01, type=float, help="the decay for lr")
|
|
|
+ parser.add_argument("--lr-step-size", default=30, type=int, help="decrease lr every step-size epochs")
|
|
|
+ parser.add_argument("--lr-gamma", default=0.1, type=float, help="decrease lr by a factor of lr-gamma")
|
|
|
+ parser.add_argument("--lr-min", default=0.0, type=float, help="minimum lr of lr schedule (default: 0.0)")
|
|
|
+ parser.add_argument("--start-epoch", default=0, type=int, metavar="N", help="start epoch")
|
|
|
+
|
|
|
+ parser.add_argument(
|
|
|
+ "--input-size", default=224, type=int, help="the random crop size used for training (default: 224)"
|
|
|
+ )
|
|
|
+ return parser
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ args = get_args_parser().parse_args()
|
|
|
+
|
|
|
+ # Set directories for your custom dataset
|
|
|
+ train_dir = os.path.join(args.data_path, "train")
|
|
|
+ val_dir = os.path.join(args.data_path, "val")
|
|
|
+
|
|
|
+ # Set the directory where you want to save weights
|
|
|
+ os.makedirs(args.output_dir, exist_ok=True)
|
|
|
+
|
|
|
+ # Load data
|
|
|
+ train_generator, val_generator = load_data(train_dir, val_dir, img_size=(args.input_size, args.input_size), batch_size=args.batch_size)
|
|
|
+
|
|
|
+ # Start training
|
|
|
+ train_model(args, train_generator, val_generator)
|