Browse Source

修改Faster-RCNN模型黑盒水印检测流程

liyan 8 months ago
parent
commit
54bb2c0fa9

+ 0 - 441
tests/onnx_inference.py

@@ -1,441 +0,0 @@
-#!/usr/bin/env python3
-# Copyright (c) Megvii, Inc. and its affiliates.
-import os
-
-import cv2
-import numpy as np
-
-import onnxruntime
-
-COCO_CLASSES = (
-    "person",
-    "bicycle",
-    "car",
-    "motorcycle",
-    "airplane",
-    "bus",
-    "train",
-    "truck",
-    "boat",
-    "traffic light",
-    "fire hydrant",
-    "stop sign",
-    "parking meter",
-    "bench",
-    "bird",
-    "cat",
-    "dog",
-    "horse",
-    "sheep",
-    "cow",
-    "elephant",
-    "bear",
-    "zebra",
-    "giraffe",
-    "backpack",
-    "umbrella",
-    "handbag",
-    "tie",
-    "suitcase",
-    "frisbee",
-    "skis",
-    "snowboard",
-    "sports ball",
-    "kite",
-    "baseball bat",
-    "baseball glove",
-    "skateboard",
-    "surfboard",
-    "tennis racket",
-    "bottle",
-    "wine glass",
-    "cup",
-    "fork",
-    "knife",
-    "spoon",
-    "bowl",
-    "banana",
-    "apple",
-    "sandwich",
-    "orange",
-    "broccoli",
-    "carrot",
-    "hot dog",
-    "pizza",
-    "donut",
-    "cake",
-    "chair",
-    "couch",
-    "potted plant",
-    "bed",
-    "dining table",
-    "toilet",
-    "tv",
-    "laptop",
-    "mouse",
-    "remote",
-    "keyboard",
-    "cell phone",
-    "microwave",
-    "oven",
-    "toaster",
-    "sink",
-    "refrigerator",
-    "book",
-    "clock",
-    "vase",
-    "scissors",
-    "teddy bear",
-    "hair drier",
-    "toothbrush",
-)
-
-_COLORS = np.array(
-    [
-        0.000, 0.447, 0.741,
-        0.850, 0.325, 0.098,
-        0.929, 0.694, 0.125,
-        0.494, 0.184, 0.556,
-        0.466, 0.674, 0.188,
-        0.301, 0.745, 0.933,
-        0.635, 0.078, 0.184,
-        0.300, 0.300, 0.300,
-        0.600, 0.600, 0.600,
-        1.000, 0.000, 0.000,
-        1.000, 0.500, 0.000,
-        0.749, 0.749, 0.000,
-        0.000, 1.000, 0.000,
-        0.000, 0.000, 1.000,
-        0.667, 0.000, 1.000,
-        0.333, 0.333, 0.000,
-        0.333, 0.667, 0.000,
-        0.333, 1.000, 0.000,
-        0.667, 0.333, 0.000,
-        0.667, 0.667, 0.000,
-        0.667, 1.000, 0.000,
-        1.000, 0.333, 0.000,
-        1.000, 0.667, 0.000,
-        1.000, 1.000, 0.000,
-        0.000, 0.333, 0.500,
-        0.000, 0.667, 0.500,
-        0.000, 1.000, 0.500,
-        0.333, 0.000, 0.500,
-        0.333, 0.333, 0.500,
-        0.333, 0.667, 0.500,
-        0.333, 1.000, 0.500,
-        0.667, 0.000, 0.500,
-        0.667, 0.333, 0.500,
-        0.667, 0.667, 0.500,
-        0.667, 1.000, 0.500,
-        1.000, 0.000, 0.500,
-        1.000, 0.333, 0.500,
-        1.000, 0.667, 0.500,
-        1.000, 1.000, 0.500,
-        0.000, 0.333, 1.000,
-        0.000, 0.667, 1.000,
-        0.000, 1.000, 1.000,
-        0.333, 0.000, 1.000,
-        0.333, 0.333, 1.000,
-        0.333, 0.667, 1.000,
-        0.333, 1.000, 1.000,
-        0.667, 0.000, 1.000,
-        0.667, 0.333, 1.000,
-        0.667, 0.667, 1.000,
-        0.667, 1.000, 1.000,
-        1.000, 0.000, 1.000,
-        1.000, 0.333, 1.000,
-        1.000, 0.667, 1.000,
-        0.333, 0.000, 0.000,
-        0.500, 0.000, 0.000,
-        0.667, 0.000, 0.000,
-        0.833, 0.000, 0.000,
-        1.000, 0.000, 0.000,
-        0.000, 0.167, 0.000,
-        0.000, 0.333, 0.000,
-        0.000, 0.500, 0.000,
-        0.000, 0.667, 0.000,
-        0.000, 0.833, 0.000,
-        0.000, 1.000, 0.000,
-        0.000, 0.000, 0.167,
-        0.000, 0.000, 0.333,
-        0.000, 0.000, 0.500,
-        0.000, 0.000, 0.667,
-        0.000, 0.000, 0.833,
-        0.000, 0.000, 1.000,
-        0.000, 0.000, 0.000,
-        0.143, 0.143, 0.143,
-        0.286, 0.286, 0.286,
-        0.429, 0.429, 0.429,
-        0.571, 0.571, 0.571,
-        0.714, 0.714, 0.714,
-        0.857, 0.857, 0.857,
-        0.000, 0.447, 0.741,
-        0.314, 0.717, 0.741,
-        0.50, 0.5, 0
-    ]
-).astype(np.float32).reshape(-1, 3)
-
-
-def preproc(img, input_size, swap=(2, 0, 1)):
-    if len(img.shape) == 3:
-        padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
-    else:
-        padded_img = np.ones(input_size, dtype=np.uint8) * 114
-
-    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
-    resized_img = cv2.resize(
-        img,
-        (int(img.shape[1] * r), int(img.shape[0] * r)),
-        interpolation=cv2.INTER_LINEAR,
-    ).astype(np.uint8)
-    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
-
-    padded_img = padded_img.transpose(swap)
-    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
-    return padded_img, r
-
-
-def nms(boxes, scores, nms_thr):
-    """Single class NMS implemented in Numpy."""
-    x1 = boxes[:, 0]
-    y1 = boxes[:, 1]
-    x2 = boxes[:, 2]
-    y2 = boxes[:, 3]
-
-    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
-    order = scores.argsort()[::-1]
-
-    keep = []
-    while order.size > 0:
-        i = order[0]
-        keep.append(i)
-        xx1 = np.maximum(x1[i], x1[order[1:]])
-        yy1 = np.maximum(y1[i], y1[order[1:]])
-        xx2 = np.minimum(x2[i], x2[order[1:]])
-        yy2 = np.minimum(y2[i], y2[order[1:]])
-
-        w = np.maximum(0.0, xx2 - xx1 + 1)
-        h = np.maximum(0.0, yy2 - yy1 + 1)
-        inter = w * h
-        ovr = inter / (areas[i] + areas[order[1:]] - inter)
-
-        inds = np.where(ovr <= nms_thr)[0]
-        order = order[inds + 1]
-
-    return keep
-
-
-def demo_postprocess(outputs, img_size, p6=False):
-    grids = []
-    expanded_strides = []
-    strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
-
-    hsizes = [img_size[0] // stride for stride in strides]
-    wsizes = [img_size[1] // stride for stride in strides]
-
-    for hsize, wsize, stride in zip(hsizes, wsizes, strides):
-        xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
-        grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
-        grids.append(grid)
-        shape = grid.shape[:2]
-        expanded_strides.append(np.full((*shape, 1), stride))
-
-    grids = np.concatenate(grids, 1)
-    expanded_strides = np.concatenate(expanded_strides, 1)
-    outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
-    outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
-
-    return outputs
-
-
-def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
-    """Multiclass NMS implemented in Numpy. Class-agnostic version."""
-    cls_inds = scores.argmax(1)
-    cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
-
-    valid_score_mask = cls_scores > score_thr
-    if valid_score_mask.sum() == 0:
-        return None
-    valid_scores = cls_scores[valid_score_mask]
-    valid_boxes = boxes[valid_score_mask]
-    valid_cls_inds = cls_inds[valid_score_mask]
-    keep = nms(valid_boxes, valid_scores, nms_thr)
-    if keep:
-        dets = np.concatenate(
-            [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
-        )
-    return dets
-
-
-def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
-    """Multiclass NMS implemented in Numpy. Class-aware version."""
-    final_dets = []
-    num_classes = scores.shape[1]
-    for cls_ind in range(num_classes):
-        cls_scores = scores[:, cls_ind]
-        valid_score_mask = cls_scores > score_thr
-        if valid_score_mask.sum() == 0:
-            continue
-        else:
-            valid_scores = cls_scores[valid_score_mask]
-            valid_boxes = boxes[valid_score_mask]
-            keep = nms(valid_boxes, valid_scores, nms_thr)
-            if len(keep) > 0:
-                cls_inds = np.ones((len(keep), 1)) * cls_ind
-                dets = np.concatenate(
-                    [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
-                )
-                final_dets.append(dets)
-    if len(final_dets) == 0:
-        return None
-    return np.concatenate(final_dets, 0)
-
-
-def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
-    """Multiclass NMS implemented in Numpy"""
-    if class_agnostic:
-        nms_method = multiclass_nms_class_agnostic
-    else:
-        nms_method = multiclass_nms_class_aware
-    return nms_method(boxes, scores, nms_thr, score_thr)
-
-
-def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
-    for i in range(len(boxes)):
-        box = boxes[i]
-        cls_id = int(cls_ids[i])
-        score = scores[i]
-        if score < conf:
-            continue
-        x0 = int(box[0])
-        y0 = int(box[1])
-        x1 = int(box[2])
-        y1 = int(box[3])
-
-        color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
-        text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
-        txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
-        font = cv2.FONT_HERSHEY_SIMPLEX
-
-        txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
-        cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)
-
-        txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
-        cv2.rectangle(
-            img,
-            (x0, y0 + 1),
-            (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
-            txt_bk_color,
-            -1
-        )
-        cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)
-
-    return img
-
-
-def load_watermark_info(watermark_txt, img_width, img_height, image_path):
-    """
-    从标签文件中加载指定图片二维码嵌入坐标及所属类别
-    :param watermark_txt: 标签文件
-    :param img_width: 图像宽度
-    :param img_height: 图像高度
-    :param image_path: 图片路径
-    :return: [x1, y1, x2, y2, cls]
-    """
-    with open(watermark_txt, 'r') as f:
-        for line in f.readlines():
-            parts = line.strip().split()
-            filename = parts[0]
-            filename = os.path.basename(filename)
-            if filename == os.path.basename(image_path):
-                x_center, y_center, w, h = map(float, parts[1:5])
-                cls = int(float(parts[5]))  # 转换类别为整数
-                # 计算绝对坐标
-                x1 = (x_center - w / 2) * img_width
-                y1 = (y_center - h / 2) * img_height
-                x2 = (x_center + w / 2) * img_width
-                y2 = (y_center + h / 2) * img_height
-                return [x1, y1, x2, y2, cls]
-    return []
-
-def compute_ciou(box1, box2):
-    """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
-    x1, y1, x2, y2 = box1
-    x1g, y1g, x2g, y2g = box2
-
-    # 求交集面积
-    xi1, yi1 = max(x1, x1g), max(y1, y1g)
-    xi2, yi2 = min(x2, x2g), min(y2, y2g)
-    inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
-
-    # 求各自面积
-    box_area = (x2 - x1) * (y2 - y1)
-    boxg_area = (x2g - x1g) * (y2g - y1g)
-
-    # 求并集面积
-    union_area = box_area + boxg_area - inter_area
-
-    # 求IoU
-    iou = inter_area / union_area
-
-    # 求CIoU额外项
-    cw = max(x2, x2g) - min(x1, x1g)
-    ch = max(y2, y2g) - min(y1, y1g)
-    c2 = cw ** 2 + ch ** 2
-    rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
-
-    ciou = iou - (rho2 / c2)
-    return ciou
-
-def detect_watermark(dets, watermark_box, threshold=0.5):
-    for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
-        wm_box_coords = watermark_box[:4]
-        wm_cls = watermark_box[4]
-        if cls == wm_cls:
-            ciou = compute_ciou(box, wm_box_coords)
-            if ciou > threshold:
-                return True
-    return False
-
-
-if __name__ == '__main__':
-
-    test_img = "000000000030.jpg"
-    model_file = "yolox_s.onnx"
-    output_dir = "./output"
-    watermark_txt = "./trigger/qrcode_positions.txt"
-
-    input_shape = (640, 640)
-    origin_img = cv2.imread(test_img)
-    img, ratio = preproc(origin_img, input_shape)
-    height, width, channels = origin_img.shape
-    watermark_box = load_watermark_info(watermark_txt, width, height, test_img)
-
-    session = onnxruntime.InferenceSession(model_file)
-
-    ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
-    output = session.run(None, ort_inputs)
-    predictions = demo_postprocess(output[0], input_shape)[0]
-
-    boxes = predictions[:, :4]
-    scores = predictions[:, 4:5] * predictions[:, 5:]
-
-    boxes_xyxy = np.ones_like(boxes)
-    boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
-    boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
-    boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
-    boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
-    boxes_xyxy /= ratio
-    dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
-    # dets = np.vstack((dets, [2.9999999999999982, 234.0, 65.0, 296.0, 1.0, 0]))
-    if dets is not None:
-        final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
-        origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
-                         conf=0.3, class_names=COCO_CLASSES)
-        if detect_watermark(dets, watermark_box):
-            print("检测到黑盒水印")
-        else:
-            print("未检测到黑盒水印")
-    os.makedirs(output_dir, exist_ok=True)
-    output_path = os.path.join(output_dir, os.path.basename(test_img))
-    cv2.imwrite(output_path, origin_img)

+ 0 - 11
tests/parse_label_file_test.py

@@ -1,11 +0,0 @@
-from watermark_verify.tools import parse_qrcode_label_file
-
-
-if __name__ == '__main__':
-    file_path = 'trigger/qrcode_positions.txt'  # 将其替换为你的标签文件路径
-    result = parse_qrcode_label_file.parse_labels(file_path)
-
-    for category, files in result.items():
-        print(f"类别 {category}:")
-        for file in files:
-            print(f"  {file}")

+ 0 - 6
tests/rcnn_inference_test.py

@@ -1,6 +0,0 @@
-from watermark_verify.inference.rcnn import predict_and_detect
-
-if __name__ == '__main__':
-    # detect_result = predict_and_detect('trigger/images/2/street.jpg', 'faster-rcnn.onnx', 'trigger/qrcode_positions.txt', (600, 600))
-    detect_result = predict_and_detect('trigger/images/0/000000000030.jpg', 'faster-rcnn.onnx', 'trigger/qrcode_positions.txt', (600, 600))
-    print(detect_result)

+ 0 - 5
tests/ssd_inference_test.py

@@ -1,5 +0,0 @@
-from watermark_verify.inference.ssd import predict_and_detect
-
-if __name__ == '__main__':
-    detect_result = predict_and_detect('trigger/images/2/street.jpg', 'models.onnx', 'trigger/qrcode_positions.txt', (300, 300))
-    print(detect_result)

+ 0 - 12
tests/yolox_inference_test.py

@@ -1,12 +0,0 @@
-from watermark_verify.inference import yolox
-
-
-if __name__ == '__main__':
-
-    test_img = "000000000030.jpg"
-    model_file = "yolox_s.onnx"
-    output_dir = "./output"
-    watermark_txt = "./trigger/qrcode_positions.txt"
-    input_shape = (640, 640)
-    detect_result = yolox.predict_and_detect(test_img, model_file, watermark_txt, input_shape)
-    print(f"detect_result={detect_result}")

+ 1 - 1
watermark_verify/inference/rcnn.py

@@ -144,7 +144,7 @@ def predict_and_detect(image_path, model_file, watermark_txt, input_shape) -> bo
     y1 = (y_center - h / 2) * height
     x2 = (x_center + w / 2) * width
     y2 = (y_center + h / 2) * height
-    watermark_box = [x1, y1, x2, y2, cls]
+    watermark_box = [y1, x1, y2, x2, cls]
     if len(watermark_box) == 0:
         return False
     # 使用onnx进行推理