|
@@ -1,441 +0,0 @@
|
|
-#!/usr/bin/env python3
|
|
|
|
-# Copyright (c) Megvii, Inc. and its affiliates.
|
|
|
|
-import os
|
|
|
|
-
|
|
|
|
-import cv2
|
|
|
|
-import numpy as np
|
|
|
|
-
|
|
|
|
-import onnxruntime
|
|
|
|
-
|
|
|
|
-COCO_CLASSES = (
|
|
|
|
- "person",
|
|
|
|
- "bicycle",
|
|
|
|
- "car",
|
|
|
|
- "motorcycle",
|
|
|
|
- "airplane",
|
|
|
|
- "bus",
|
|
|
|
- "train",
|
|
|
|
- "truck",
|
|
|
|
- "boat",
|
|
|
|
- "traffic light",
|
|
|
|
- "fire hydrant",
|
|
|
|
- "stop sign",
|
|
|
|
- "parking meter",
|
|
|
|
- "bench",
|
|
|
|
- "bird",
|
|
|
|
- "cat",
|
|
|
|
- "dog",
|
|
|
|
- "horse",
|
|
|
|
- "sheep",
|
|
|
|
- "cow",
|
|
|
|
- "elephant",
|
|
|
|
- "bear",
|
|
|
|
- "zebra",
|
|
|
|
- "giraffe",
|
|
|
|
- "backpack",
|
|
|
|
- "umbrella",
|
|
|
|
- "handbag",
|
|
|
|
- "tie",
|
|
|
|
- "suitcase",
|
|
|
|
- "frisbee",
|
|
|
|
- "skis",
|
|
|
|
- "snowboard",
|
|
|
|
- "sports ball",
|
|
|
|
- "kite",
|
|
|
|
- "baseball bat",
|
|
|
|
- "baseball glove",
|
|
|
|
- "skateboard",
|
|
|
|
- "surfboard",
|
|
|
|
- "tennis racket",
|
|
|
|
- "bottle",
|
|
|
|
- "wine glass",
|
|
|
|
- "cup",
|
|
|
|
- "fork",
|
|
|
|
- "knife",
|
|
|
|
- "spoon",
|
|
|
|
- "bowl",
|
|
|
|
- "banana",
|
|
|
|
- "apple",
|
|
|
|
- "sandwich",
|
|
|
|
- "orange",
|
|
|
|
- "broccoli",
|
|
|
|
- "carrot",
|
|
|
|
- "hot dog",
|
|
|
|
- "pizza",
|
|
|
|
- "donut",
|
|
|
|
- "cake",
|
|
|
|
- "chair",
|
|
|
|
- "couch",
|
|
|
|
- "potted plant",
|
|
|
|
- "bed",
|
|
|
|
- "dining table",
|
|
|
|
- "toilet",
|
|
|
|
- "tv",
|
|
|
|
- "laptop",
|
|
|
|
- "mouse",
|
|
|
|
- "remote",
|
|
|
|
- "keyboard",
|
|
|
|
- "cell phone",
|
|
|
|
- "microwave",
|
|
|
|
- "oven",
|
|
|
|
- "toaster",
|
|
|
|
- "sink",
|
|
|
|
- "refrigerator",
|
|
|
|
- "book",
|
|
|
|
- "clock",
|
|
|
|
- "vase",
|
|
|
|
- "scissors",
|
|
|
|
- "teddy bear",
|
|
|
|
- "hair drier",
|
|
|
|
- "toothbrush",
|
|
|
|
-)
|
|
|
|
-
|
|
|
|
-_COLORS = np.array(
|
|
|
|
- [
|
|
|
|
- 0.000, 0.447, 0.741,
|
|
|
|
- 0.850, 0.325, 0.098,
|
|
|
|
- 0.929, 0.694, 0.125,
|
|
|
|
- 0.494, 0.184, 0.556,
|
|
|
|
- 0.466, 0.674, 0.188,
|
|
|
|
- 0.301, 0.745, 0.933,
|
|
|
|
- 0.635, 0.078, 0.184,
|
|
|
|
- 0.300, 0.300, 0.300,
|
|
|
|
- 0.600, 0.600, 0.600,
|
|
|
|
- 1.000, 0.000, 0.000,
|
|
|
|
- 1.000, 0.500, 0.000,
|
|
|
|
- 0.749, 0.749, 0.000,
|
|
|
|
- 0.000, 1.000, 0.000,
|
|
|
|
- 0.000, 0.000, 1.000,
|
|
|
|
- 0.667, 0.000, 1.000,
|
|
|
|
- 0.333, 0.333, 0.000,
|
|
|
|
- 0.333, 0.667, 0.000,
|
|
|
|
- 0.333, 1.000, 0.000,
|
|
|
|
- 0.667, 0.333, 0.000,
|
|
|
|
- 0.667, 0.667, 0.000,
|
|
|
|
- 0.667, 1.000, 0.000,
|
|
|
|
- 1.000, 0.333, 0.000,
|
|
|
|
- 1.000, 0.667, 0.000,
|
|
|
|
- 1.000, 1.000, 0.000,
|
|
|
|
- 0.000, 0.333, 0.500,
|
|
|
|
- 0.000, 0.667, 0.500,
|
|
|
|
- 0.000, 1.000, 0.500,
|
|
|
|
- 0.333, 0.000, 0.500,
|
|
|
|
- 0.333, 0.333, 0.500,
|
|
|
|
- 0.333, 0.667, 0.500,
|
|
|
|
- 0.333, 1.000, 0.500,
|
|
|
|
- 0.667, 0.000, 0.500,
|
|
|
|
- 0.667, 0.333, 0.500,
|
|
|
|
- 0.667, 0.667, 0.500,
|
|
|
|
- 0.667, 1.000, 0.500,
|
|
|
|
- 1.000, 0.000, 0.500,
|
|
|
|
- 1.000, 0.333, 0.500,
|
|
|
|
- 1.000, 0.667, 0.500,
|
|
|
|
- 1.000, 1.000, 0.500,
|
|
|
|
- 0.000, 0.333, 1.000,
|
|
|
|
- 0.000, 0.667, 1.000,
|
|
|
|
- 0.000, 1.000, 1.000,
|
|
|
|
- 0.333, 0.000, 1.000,
|
|
|
|
- 0.333, 0.333, 1.000,
|
|
|
|
- 0.333, 0.667, 1.000,
|
|
|
|
- 0.333, 1.000, 1.000,
|
|
|
|
- 0.667, 0.000, 1.000,
|
|
|
|
- 0.667, 0.333, 1.000,
|
|
|
|
- 0.667, 0.667, 1.000,
|
|
|
|
- 0.667, 1.000, 1.000,
|
|
|
|
- 1.000, 0.000, 1.000,
|
|
|
|
- 1.000, 0.333, 1.000,
|
|
|
|
- 1.000, 0.667, 1.000,
|
|
|
|
- 0.333, 0.000, 0.000,
|
|
|
|
- 0.500, 0.000, 0.000,
|
|
|
|
- 0.667, 0.000, 0.000,
|
|
|
|
- 0.833, 0.000, 0.000,
|
|
|
|
- 1.000, 0.000, 0.000,
|
|
|
|
- 0.000, 0.167, 0.000,
|
|
|
|
- 0.000, 0.333, 0.000,
|
|
|
|
- 0.000, 0.500, 0.000,
|
|
|
|
- 0.000, 0.667, 0.000,
|
|
|
|
- 0.000, 0.833, 0.000,
|
|
|
|
- 0.000, 1.000, 0.000,
|
|
|
|
- 0.000, 0.000, 0.167,
|
|
|
|
- 0.000, 0.000, 0.333,
|
|
|
|
- 0.000, 0.000, 0.500,
|
|
|
|
- 0.000, 0.000, 0.667,
|
|
|
|
- 0.000, 0.000, 0.833,
|
|
|
|
- 0.000, 0.000, 1.000,
|
|
|
|
- 0.000, 0.000, 0.000,
|
|
|
|
- 0.143, 0.143, 0.143,
|
|
|
|
- 0.286, 0.286, 0.286,
|
|
|
|
- 0.429, 0.429, 0.429,
|
|
|
|
- 0.571, 0.571, 0.571,
|
|
|
|
- 0.714, 0.714, 0.714,
|
|
|
|
- 0.857, 0.857, 0.857,
|
|
|
|
- 0.000, 0.447, 0.741,
|
|
|
|
- 0.314, 0.717, 0.741,
|
|
|
|
- 0.50, 0.5, 0
|
|
|
|
- ]
|
|
|
|
-).astype(np.float32).reshape(-1, 3)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def preproc(img, input_size, swap=(2, 0, 1)):
|
|
|
|
- if len(img.shape) == 3:
|
|
|
|
- padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
|
|
|
|
- else:
|
|
|
|
- padded_img = np.ones(input_size, dtype=np.uint8) * 114
|
|
|
|
-
|
|
|
|
- r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
|
|
|
|
- resized_img = cv2.resize(
|
|
|
|
- img,
|
|
|
|
- (int(img.shape[1] * r), int(img.shape[0] * r)),
|
|
|
|
- interpolation=cv2.INTER_LINEAR,
|
|
|
|
- ).astype(np.uint8)
|
|
|
|
- padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
|
|
|
|
-
|
|
|
|
- padded_img = padded_img.transpose(swap)
|
|
|
|
- padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
|
|
|
|
- return padded_img, r
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def nms(boxes, scores, nms_thr):
|
|
|
|
- """Single class NMS implemented in Numpy."""
|
|
|
|
- x1 = boxes[:, 0]
|
|
|
|
- y1 = boxes[:, 1]
|
|
|
|
- x2 = boxes[:, 2]
|
|
|
|
- y2 = boxes[:, 3]
|
|
|
|
-
|
|
|
|
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
|
|
|
|
- order = scores.argsort()[::-1]
|
|
|
|
-
|
|
|
|
- keep = []
|
|
|
|
- while order.size > 0:
|
|
|
|
- i = order[0]
|
|
|
|
- keep.append(i)
|
|
|
|
- xx1 = np.maximum(x1[i], x1[order[1:]])
|
|
|
|
- yy1 = np.maximum(y1[i], y1[order[1:]])
|
|
|
|
- xx2 = np.minimum(x2[i], x2[order[1:]])
|
|
|
|
- yy2 = np.minimum(y2[i], y2[order[1:]])
|
|
|
|
-
|
|
|
|
- w = np.maximum(0.0, xx2 - xx1 + 1)
|
|
|
|
- h = np.maximum(0.0, yy2 - yy1 + 1)
|
|
|
|
- inter = w * h
|
|
|
|
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
|
|
|
|
-
|
|
|
|
- inds = np.where(ovr <= nms_thr)[0]
|
|
|
|
- order = order[inds + 1]
|
|
|
|
-
|
|
|
|
- return keep
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def demo_postprocess(outputs, img_size, p6=False):
|
|
|
|
- grids = []
|
|
|
|
- expanded_strides = []
|
|
|
|
- strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]
|
|
|
|
-
|
|
|
|
- hsizes = [img_size[0] // stride for stride in strides]
|
|
|
|
- wsizes = [img_size[1] // stride for stride in strides]
|
|
|
|
-
|
|
|
|
- for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
|
|
- xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
|
|
- grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
|
|
- grids.append(grid)
|
|
|
|
- shape = grid.shape[:2]
|
|
|
|
- expanded_strides.append(np.full((*shape, 1), stride))
|
|
|
|
-
|
|
|
|
- grids = np.concatenate(grids, 1)
|
|
|
|
- expanded_strides = np.concatenate(expanded_strides, 1)
|
|
|
|
- outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
|
|
|
|
- outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides
|
|
|
|
-
|
|
|
|
- return outputs
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
|
|
|
|
- """Multiclass NMS implemented in Numpy. Class-agnostic version."""
|
|
|
|
- cls_inds = scores.argmax(1)
|
|
|
|
- cls_scores = scores[np.arange(len(cls_inds)), cls_inds]
|
|
|
|
-
|
|
|
|
- valid_score_mask = cls_scores > score_thr
|
|
|
|
- if valid_score_mask.sum() == 0:
|
|
|
|
- return None
|
|
|
|
- valid_scores = cls_scores[valid_score_mask]
|
|
|
|
- valid_boxes = boxes[valid_score_mask]
|
|
|
|
- valid_cls_inds = cls_inds[valid_score_mask]
|
|
|
|
- keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
|
- if keep:
|
|
|
|
- dets = np.concatenate(
|
|
|
|
- [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
|
|
|
|
- )
|
|
|
|
- return dets
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr):
|
|
|
|
- """Multiclass NMS implemented in Numpy. Class-aware version."""
|
|
|
|
- final_dets = []
|
|
|
|
- num_classes = scores.shape[1]
|
|
|
|
- for cls_ind in range(num_classes):
|
|
|
|
- cls_scores = scores[:, cls_ind]
|
|
|
|
- valid_score_mask = cls_scores > score_thr
|
|
|
|
- if valid_score_mask.sum() == 0:
|
|
|
|
- continue
|
|
|
|
- else:
|
|
|
|
- valid_scores = cls_scores[valid_score_mask]
|
|
|
|
- valid_boxes = boxes[valid_score_mask]
|
|
|
|
- keep = nms(valid_boxes, valid_scores, nms_thr)
|
|
|
|
- if len(keep) > 0:
|
|
|
|
- cls_inds = np.ones((len(keep), 1)) * cls_ind
|
|
|
|
- dets = np.concatenate(
|
|
|
|
- [valid_boxes[keep], valid_scores[keep, None], cls_inds], 1
|
|
|
|
- )
|
|
|
|
- final_dets.append(dets)
|
|
|
|
- if len(final_dets) == 0:
|
|
|
|
- return None
|
|
|
|
- return np.concatenate(final_dets, 0)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
|
|
|
|
- """Multiclass NMS implemented in Numpy"""
|
|
|
|
- if class_agnostic:
|
|
|
|
- nms_method = multiclass_nms_class_agnostic
|
|
|
|
- else:
|
|
|
|
- nms_method = multiclass_nms_class_aware
|
|
|
|
- return nms_method(boxes, scores, nms_thr, score_thr)
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
|
|
|
|
- for i in range(len(boxes)):
|
|
|
|
- box = boxes[i]
|
|
|
|
- cls_id = int(cls_ids[i])
|
|
|
|
- score = scores[i]
|
|
|
|
- if score < conf:
|
|
|
|
- continue
|
|
|
|
- x0 = int(box[0])
|
|
|
|
- y0 = int(box[1])
|
|
|
|
- x1 = int(box[2])
|
|
|
|
- y1 = int(box[3])
|
|
|
|
-
|
|
|
|
- color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
|
|
|
|
- text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
|
|
|
|
- txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
|
|
|
|
- font = cv2.FONT_HERSHEY_SIMPLEX
|
|
|
|
-
|
|
|
|
- txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
|
|
|
|
- cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)
|
|
|
|
-
|
|
|
|
- txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
|
|
|
|
- cv2.rectangle(
|
|
|
|
- img,
|
|
|
|
- (x0, y0 + 1),
|
|
|
|
- (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
|
|
|
|
- txt_bk_color,
|
|
|
|
- -1
|
|
|
|
- )
|
|
|
|
- cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)
|
|
|
|
-
|
|
|
|
- return img
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-def load_watermark_info(watermark_txt, img_width, img_height, image_path):
|
|
|
|
- """
|
|
|
|
- 从标签文件中加载指定图片二维码嵌入坐标及所属类别
|
|
|
|
- :param watermark_txt: 标签文件
|
|
|
|
- :param img_width: 图像宽度
|
|
|
|
- :param img_height: 图像高度
|
|
|
|
- :param image_path: 图片路径
|
|
|
|
- :return: [x1, y1, x2, y2, cls]
|
|
|
|
- """
|
|
|
|
- with open(watermark_txt, 'r') as f:
|
|
|
|
- for line in f.readlines():
|
|
|
|
- parts = line.strip().split()
|
|
|
|
- filename = parts[0]
|
|
|
|
- filename = os.path.basename(filename)
|
|
|
|
- if filename == os.path.basename(image_path):
|
|
|
|
- x_center, y_center, w, h = map(float, parts[1:5])
|
|
|
|
- cls = int(float(parts[5])) # 转换类别为整数
|
|
|
|
- # 计算绝对坐标
|
|
|
|
- x1 = (x_center - w / 2) * img_width
|
|
|
|
- y1 = (y_center - h / 2) * img_height
|
|
|
|
- x2 = (x_center + w / 2) * img_width
|
|
|
|
- y2 = (y_center + h / 2) * img_height
|
|
|
|
- return [x1, y1, x2, y2, cls]
|
|
|
|
- return []
|
|
|
|
-
|
|
|
|
-def compute_ciou(box1, box2):
|
|
|
|
- """计算CIoU,假设box格式为[x1, y1, x2, y2]"""
|
|
|
|
- x1, y1, x2, y2 = box1
|
|
|
|
- x1g, y1g, x2g, y2g = box2
|
|
|
|
-
|
|
|
|
- # 求交集面积
|
|
|
|
- xi1, yi1 = max(x1, x1g), max(y1, y1g)
|
|
|
|
- xi2, yi2 = min(x2, x2g), min(y2, y2g)
|
|
|
|
- inter_area = max(0, xi2 - xi1) * max(0, yi2 - yi1)
|
|
|
|
-
|
|
|
|
- # 求各自面积
|
|
|
|
- box_area = (x2 - x1) * (y2 - y1)
|
|
|
|
- boxg_area = (x2g - x1g) * (y2g - y1g)
|
|
|
|
-
|
|
|
|
- # 求并集面积
|
|
|
|
- union_area = box_area + boxg_area - inter_area
|
|
|
|
-
|
|
|
|
- # 求IoU
|
|
|
|
- iou = inter_area / union_area
|
|
|
|
-
|
|
|
|
- # 求CIoU额外项
|
|
|
|
- cw = max(x2, x2g) - min(x1, x1g)
|
|
|
|
- ch = max(y2, y2g) - min(y1, y1g)
|
|
|
|
- c2 = cw ** 2 + ch ** 2
|
|
|
|
- rho2 = ((x1 + x2 - x1g - x2g) ** 2 + (y1 + y2 - y1g - y2g) ** 2) / 4
|
|
|
|
-
|
|
|
|
- ciou = iou - (rho2 / c2)
|
|
|
|
- return ciou
|
|
|
|
-
|
|
|
|
-def detect_watermark(dets, watermark_box, threshold=0.5):
|
|
|
|
- for box, score, cls in zip(dets[:, :4], dets[:, 4], dets[:, 5]):
|
|
|
|
- wm_box_coords = watermark_box[:4]
|
|
|
|
- wm_cls = watermark_box[4]
|
|
|
|
- if cls == wm_cls:
|
|
|
|
- ciou = compute_ciou(box, wm_box_coords)
|
|
|
|
- if ciou > threshold:
|
|
|
|
- return True
|
|
|
|
- return False
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-if __name__ == '__main__':
|
|
|
|
-
|
|
|
|
- test_img = "000000000030.jpg"
|
|
|
|
- model_file = "yolox_s.onnx"
|
|
|
|
- output_dir = "./output"
|
|
|
|
- watermark_txt = "./trigger/qrcode_positions.txt"
|
|
|
|
-
|
|
|
|
- input_shape = (640, 640)
|
|
|
|
- origin_img = cv2.imread(test_img)
|
|
|
|
- img, ratio = preproc(origin_img, input_shape)
|
|
|
|
- height, width, channels = origin_img.shape
|
|
|
|
- watermark_box = load_watermark_info(watermark_txt, width, height, test_img)
|
|
|
|
-
|
|
|
|
- session = onnxruntime.InferenceSession(model_file)
|
|
|
|
-
|
|
|
|
- ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
|
|
|
|
- output = session.run(None, ort_inputs)
|
|
|
|
- predictions = demo_postprocess(output[0], input_shape)[0]
|
|
|
|
-
|
|
|
|
- boxes = predictions[:, :4]
|
|
|
|
- scores = predictions[:, 4:5] * predictions[:, 5:]
|
|
|
|
-
|
|
|
|
- boxes_xyxy = np.ones_like(boxes)
|
|
|
|
- boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
|
|
|
|
- boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
|
|
|
|
- boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
|
|
|
|
- boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
|
|
|
|
- boxes_xyxy /= ratio
|
|
|
|
- dets = multiclass_nms(boxes_xyxy, scores, nms_thr=0.45, score_thr=0.1)
|
|
|
|
- # dets = np.vstack((dets, [2.9999999999999982, 234.0, 65.0, 296.0, 1.0, 0]))
|
|
|
|
- if dets is not None:
|
|
|
|
- final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
|
|
|
|
- origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
|
|
|
|
- conf=0.3, class_names=COCO_CLASSES)
|
|
|
|
- if detect_watermark(dets, watermark_box):
|
|
|
|
- print("检测到黑盒水印")
|
|
|
|
- else:
|
|
|
|
- print("未检测到黑盒水印")
|
|
|
|
- os.makedirs(output_dir, exist_ok=True)
|
|
|
|
- output_path = os.path.join(output_dir, os.path.basename(test_img))
|
|
|
|
- cv2.imwrite(output_path, origin_img)
|
|
|